# **Scavenging Dynamics of the Australian Alps**



### James Matthew Vandersteen

BSc (Hons) – The University of Queensland BEnvSc – Monash University

Supervisors: Dr Thomas Newsome & Associate Professor Mathew Crowther

This thesis is submitted in fulfilment of the requirements for a Master of Philosophy (Science)

Faculty of Science - School of Life and Environmental Sciences

The University of Sydney

This is to certify that to the best of my knowledge; the content of this thesis is my own work. This thesis has not been submitted for any degree or other purposes.

James Matthew Vandersteen

iii

# **Table of Contents**

| Title pa | age                                | i   |
|----------|------------------------------------|-----|
| Statem   | ent of originality                 | ii  |
| Table o  | Fable of contents                  |     |
| Acknow   | wledgements                        | vii |
| Abstra   | ct                                 | 1   |
| Chapte   | er 1 - Introduction                | 3   |
|          | Carrion in the landscape           | 3   |
|          | Carrion as a resource              | 4   |
|          | Scavenger guilds and their members |     |
|          | Facultative scavengers             | 6   |
|          | Invertebrate scavengers            |     |
|          | Seasonality in scavenging ecology  | 8   |
|          | Scavenging in Australia            |     |
|          | Scavenging in the Australian Alps  |     |
|          | Aims and hypotheses                | 14  |
|          | Implications                       |     |
| F        | References                         | 17  |

| scavenging dynamics                           | 30                        |
|-----------------------------------------------|---------------------------|
| Abstract                                      | 30                        |
| Introduction                                  | 31                        |
| Methods                                       | 34                        |
| Study site                                    |                           |
| Ethics, licenses, and permits                 |                           |
| Fieldwork                                     |                           |
| Analyses                                      | 36                        |
| Results                                       | _39                       |
| Discussion                                    | 47                        |
| Conclusion                                    | 52                        |
| References                                    | 53                        |
| Supplementary material                        | 63                        |
| Chapter 3 – Absence of apex predator top-down | effects on mesoscavengers |
|                                               | 86                        |
| Abstract                                      | 86                        |
| Introduction                                  | 87                        |
| Methods                                       | 93                        |
| Study site                                    |                           |
| Ethics, licenses, and permits                 | 93                        |

Chapter 2 – Carcass use by mesoscavengers determines seasonality in sca

| Fieldwork                                    |     |
|----------------------------------------------|-----|
| Analyses                                     |     |
| Results                                      | 98  |
| Discussion                                   | 103 |
| Conclusion                                   | 106 |
| References                                   | 107 |
| Supplementary material                       | 115 |
| Chapter 4 – Conclusion and future directions | 134 |
| Conclusion                                   | 134 |
| Future directions                            | 137 |
| References                                   | 141 |

# Acknowledgments

In the spirit of reconciliation, the Ngarigo people, the Traditional Custodians of the land on which this study took place, are acknowledged. Respects are paid to their Elders past and present and also extended to all Aboriginal and Torres Strait Islander peoples today.

I would like to begin by thanking Thomas Newsome for his supervision and support of all matters big and small over the course of my master's degree. I am eternally grateful for the support, hospitality, cooking, and so much more provided by Ted Rowley and Jo Oddie, without them this study, and indeed my master's degree, would truly not have been possible. Thank you to Mathew Crowther for his advice and guidance on all things 'statistics'. All credit to Chris Fust for undertaking his master's degree in tandem and collaboratively with that of mine, I can be a difficult person to work with at times, but we did it, and completed an epic research project. I am especially grateful for the numerous volunteers that got 'down and dirty' and put in the hard yards on many long days in the field, thank you Matt Smith, Benjamin Viola, and Nicholas Whyte. The support of my research group (The Global Ecology Lab) was invaluable, thank you to every member (special mention to Stefanie Bonat, Emma Spencer, Rhys Cairncross, and Molly Kane) who may have helped me in any way, shape, or form. Lastly, I send love to my family and partner (and her family) for all the 'behind the scenes stuff'.

## 1 Abstract

2 Carrion (dead animal biomass) has received little attention as a high energy and nutrient rich 3 ecosystem resource. Recently, the ability of carrion to attract diverse groups of vertebrate 4 scavengers has been utilised as a focal point within ecosystems to assess scavenging dynamics. 5 Fluctuations in carrion biomass and differences in vertebrate scavenging rates are often linked 6 to the seasons. However, despite the strong consensus that scavenging dynamics are seasonal, 7 many field-based studies still fail to sufficiently consider the seasons and/or or replicate studies 8 across all seasons. To address these shortcomings and highlight the importance of seasonal 9 effects in scavenging ecology, this thesis describes vertebrate scavenging dynamics in the 10 highly seasonal Australian Alps. Here, 15 carcasses were experimentally deployed each season 11 to monitor vertebrate scavenging dynamics for 60 days via a remote camera. The findings 12 demonstrated highly seasonal scavenging dynamics but were unique given that seasonal 13 scavenging trends were dominated by highly abundant low-ranking mesoscavengers. The 14 brushtail possum (Trichosurus vulpecula) dominated winter-time scavenging, presumably to 15 supplement a lack of other available food sources. Whilst raven species (Corvus coronoides 16 and Corvus mellori) were highly prolific scavengers during spring, likely to meet the demands 17 of breeding. This mesoscavenger trend was apparent despite the presence of an apex predator, 18 the dingo (*Canis dingo*). However, the dingo was found to scavenge at low rates, and this raised 19 several questions regarding density dependent predator theories; carrion abundance, and 20 availability; and how these potentially limit the top-down scavenging effects of the dingo. In 21 conclusion, the methods used here serve as a practical example of a robust and repeatable 22 experimental design for monitoring and assessing scavenging dynamics and exemplifies the 23 inclusion and importance of seasonal effects in scavenging ecology.

| 25 |  |  |  |
|----|--|--|--|
| 26 |  |  |  |
| 27 |  |  |  |
| 28 |  |  |  |
| 29 |  |  |  |
| 30 |  |  |  |
| 31 |  |  |  |
| 32 |  |  |  |
| 33 |  |  |  |
| 34 |  |  |  |
| 35 |  |  |  |
| 36 |  |  |  |
| 37 |  |  |  |

# **38** Chapter 1 – Introduction

#### **39** Carrion in the landscape

40 The cycle of life and death is one of the few predictable processes on Earth. Within an 41 ecological framework, this cycle provides a means to an end by recycling the energy, nutrients, 42 and resources, accumulated by an organism over its lifetime, into the broader environment as 43 it decomposes [1, 2]. Until recently, the sum of dead matter contributing to this cycle was 44 treated as a single resource pool [3]. This resource pool is dominated by plant-based detritus 45 given that its living counterparts total global biomass (450Gt) shadows that of any other 46 biomass types: bacteria (70Gt); fungi (12Gt); and animal (2Gt) [1, 4]. Because this interface 47 between life and death is dominated by the sheer scale in which plant biomass exists, the 48 subsequent ecosystem processes (e.g., trophic structuring and ecological cascades) serviced by 49 the decomposition of plant-based detritus are well understood [3]. Consequently, a significant 50 bias exists in the literature whereby the ecosystem services provided by the decomposition of 51 non-plant-based detritus are likely underestimated [1, 5, 6].

52 Carrion (dead animal biomass) has received little attention in the literature as an available 53 resource within ecosystems. Compared to plant-based detritus carrion is a much more spatially 54 and temporally patchy resource [3, 7]. In highly seasonal environments, for instance, 55 fluctuations in carrion biomass can be extreme due to processes interlinked with the seasons 56 such as thermal extremes, food availability, and breeding seasons [8]. For example, each year 57 en masse Pacific salmon (Oncorhynchus spp.) migrate from the ocean to coastal feeding 58 freshwater rivers and creeks to spawn. This salmon run only happens over a 2–3-month period 59 after which all the salmon succumb to a rapid senescent death. Gende et al. (2004) found that 60 in one Alaskan creek alone, the total run size for a season was 674 salmon. This run size equated to this single creek receiving 80.2 kg of N, 11.6 kg of P, and 1.2 x 10<sup>7</sup> kJ of energy in the form 61

of carrion [9]. The fate of salmon carcasses (i.e., scavenged or *in situ* decomposition) also determines ecosystem specific flow-on effects [10, 11]. For example, nutrients and energy derived from salmon carcasses scavenged by bears often enter terrestrial systems and accumulate in vegetation after being carried ashore, partially consumed, and left to decay, or via bear urine and faeces [12, 13]. Conversely, nutrients and energy derived from carcasses that come to rest within the waterway, enter the aquatic system and can supplement lower trophic level species (e.g., algae) that sustain such aquatic ecosystems [14].

69 Anthropogenic impacts can also increase carrion loads in ecosystems. Roads pose a significant 70 threat to a vast array of wildlife and as such have become one of the most common places 71 where carrion can be observed [15, 16]. For example, in the United States alone it has been 72 estimated that between 89-340 million birds die annually as roadkill [17] and that vehicle 73 collision now accounts for more vertebrate mortality than hunting [18]. In Australia, it is 74 estimated that marsupial roadkill exceeds 4 million individuals per year [19]. There is also 75 evidence that mass animal mortality events are on the rise globally because of anthropogenic 76 factors including climate change [20]. These events can similarly result in large carrion inputs 77 into ecosystems. The historical tendency to overlook carrion as a resource, when considered in 78 conjunction with the increasing rates with which anthropogenic impacts are altering the carrion 79 pool, highlights the need to further understand the role of carrion within ecosystems.

#### 80 Carrion as a resource

Despite carrion being much more spatially, temporally, and quantitatively variable than plantbased detritus, its rate of decomposition is in fact 10-100 times faster than that of plant-based detritus [1, 21]. This is because carrion is a much more energy and nutrient rich resource characterised by higher nitrogen, phosphorus, and water contents, and fewer deterrent compounds [7, 22]. Consequently, carrion is a valuable high-quality resource to which a unique group of species that scavenge have become specifically adapted to exploit. The ecosystem 87 services provided by scavengers are often overlooked despite the critical role they play within 88 all ecosystems, benefiting both the natural and human environment [23]. This is especially true 89 given the recognition that predators receive for the ways in which their ecosystem services 90 structure communities across multiple trophic levels [24, 25]. Scavengers have evolved to 91 become a highly specialised group of species that in unison can efficiently break down and 92 consume carrion [26]. This fast rate at which carrion is processed makes it difficult to observe 93 the inner workings, intricacies, and dynamics of scavenging in a natural setting. However, 94 scavenging has been demonstrated to (i) provide critical linkages in food webs; (ii) distribute 95 nutrients within and among ecosystems; and (iii) inadvertently reap economic and human 96 health benefits related to carcass disposal and sanitary measures [27].

#### 97 Scavenger guilds and their members

98 The group of taxa responsible for scavenging includes both vertebrate and invertebrate species 99 as well as bacteria/microbes, all of which are globally prevalent in both terrestrial and aquatic 100 ecosystems. For the purposes of this thesis, discussion will be primarily focusing on the 101 vertebrate scavengers. Broadly, vertebrate scavenger guilds are composed of obligate 102 scavengers and facultative scavengers. The former relies entirely on carrion as a food resource, 103 and it is this specificity that makes them so rare. As such, vultures are the only true terrestrial 104 vertebrate obligate scavengers due to their ability to soar over large areas in search of carrion 105 which is more or less spatially and temporally consistent within their landscapes [8, 28]. The 106 social behaviours of vultures, the primary mechanism of which is local enhancement, also 107 further facilitates their ability to locate carcasses [29, 30]. However, due to widespread human 108 persecution, many vulture species are experiencing catastrophic population declines which in 109 turn is altering scavenging dynamics globally [31].

#### 111 Facultative scavengers

112 All other terrestrial vertebrate scavenging species are facultative scavengers. These species are 113 not reliant on carrion as their primary food resource. Instead, they scavenge on carrion at 114 different points in their life stage, in response to seasonal changes, in low resource times, or in 115 the absence of competitively dominant scavengers [32, 33]. Of the facultative scavengers, 116 predators (that scavenge) are some of the most common species recorded at carcasses. These 117 predators are typically classified as either apex predators or mesopredators. The former are 118 species characterised by their position at the top of the food chain and lack natural predators 119 [34], whilst the latter are any "midranking predator in a food web, regardless of size or 120 taxonomy" [35]. The presence or absence of either species group within ecosystems can cause 121 trophic cascades that can result from their interspecific interactions or lack thereof [34]. One 122 of the most well-known of these cascades is described by the mesopredator release hypothesis. 123 This phenomenon explains how constraints to the population growth of mesopredators, which 124 are controlled by competitively dominant apex predators, are released following a decline in 125 apex predator population levels [25, 36, 37]. The consequences of such interactions can also 126 have profound effects on scavenging dynamics when occurring surrounding carrion i.e., 127 'mesoscavenger release' [38, 39].

128 Apex predators can also influence scavenging dynamics by way of other top-down effects and 129 this can come via two main pathways [40]. *Firstly*, the predatory activities of apex predators 130 can dictate scavenging rates within an ecosystem via the provision of carrion from their 131 partially consumed prey [41]. This dynamic has been demonstrated in Yellowstone National 132 Park following the reintroduction of the grey wolf (Canis lupus). Prior to the reintroduction, 133 carrion biomass pulsed in March-April when many elk (Cervus canadensis) succumb to the harsh conditions of winter. Consequently, much of the scavenging activity in Yellowstone 134 135 National Park primarily occurred during this period. However, carrion biomass is now more

seasonally available via the remains left from grey wolf kills, and thus, scavenging rates havefollowed a similar trend [42].

138 Secondly, apex predators can dictate scavenging dynamics via their own scavenging activities 139 and interspecific interactions surrounding non-prey killed carrion [43]. Apex predators, like 140 vultures, can rapidly consume carrion biomass including bones, and their presence at carcass 141 sites, can therefore, accelerate decomposition rates [44]. Through fear effects (i.e., smaller 142 species avoiding larger species), the scavenging activities of apex predators can also reduce 143 scavenger species richness and the time spent scavenging by other scavenger species at carrion 144 [39, 45, 46]. Furthermore, kleptoparasitic scavenging (i.e., scavenging of stolen prey) by apex 145 predators can have compounding effects on the victim predator whose kill has been stolen. Not 146 only will the victim predator expend energy for little to no return, but subsequently time spent 147 hunting will increase per consumed kill which can have detrimental impacts on overall 148 individual fitness [46]. Such apex predator effects can be so extreme that some mesopredators 149 have developed flexible behavioural strategies when handling prey, as well as spatial and 150 temporal measures, in order to avoid confrontations and coexists with apex predators within 151 the landscape [47, 48].

152 A whole suite of other species completes the facultative scavenger group. This includes many 153 omnivorous species that are not strictly predators and are highly opportunistic, these species 154 include corvid spp., racoon and possum spp., wild pigs, and many species of reptile [49]. These 155 (mostly) non-predatory species can be common scavengers in systems not dominated by 156 competitively superior scavengers [50-52]. However, in the presence of such dominant 157 scavengers, the scavenging rates of these non-predatory subordinate scavengers are often 158 supressed, and this has consequently caused scavenging by such species to be underestimated 159 and even unknown [32]. Additionally, carrion is not exclusively a food resource but also a more 160 practical focal point within ecosystems for scavengers that may exploit other carcass resources.

For instance, many passerine species utilise carcasses as a source of hair or feathers for nesting material [53]. Furthermore, carcasses also attract a host of invertebrate scavenger species, upon which vertebrates, and indeed other invertebrates, can subsequently predate without explicitly utilising the carcass [53].

#### 165 Invertebrate scavengers

166 Invertebrate scavenger species are also a crucial component of any scavenger guild. In many 167 cases, invertebrate scavenging is much more complex than that of vertebrates, largely due to 168 the complexity of chemical and visual cues utilised by invertebrates for carrion detection, 169 colonization, and succession [54]. Terrestrial invertebrate scavenging is primarily limited to 170 insects which in turn are dominated by Diptera (true flies) and Coleoptera (beetles) but also 171 include Hymenoptera (ants, bees, and wasps), and Acari (mites) [54]. Scavenging by such 172 species orders can be highly contrasting on multiple temporal scales [55]. This is especially 173 apparent when considering the seasons, with carrion biomass loss attributed to insect 174 scavenging generally highest during summer and lowest during winter [54]. In some 175 ecosystems, this seasonal difference can be so extreme that during summer insect scavenging 176 is the primary driver of carrier decomposition rates, not vertebrate scavenging, despite the vast 177 amounts of carrion that vertebrates can consume at once [27, 56].

### 178 Seasonality in scavenging ecology

As previously noted, carrion is temporally patchy, and this is largely due to seasonality in the carrion pool which is linked to animal deaths and predation rates [3, 7, 8]. Consequently, scavenging is highly seasonal. The seasonal scavenging rates and activities of invertebrates can largely be attributed to warm (high scavenging rates) and cold (low scavenging rates) conditions [54]. However, the scavenging rates of vertebrates are more complex within this seasonal framework due to contrasting seasonality in the available carrion pool and the

185 scavenging rates of the scavengers themselves [41]. For instance, it is generally accepted that 186 vertebrate scavenging rates are highest during winter, especially in the higher and lower 187 latitudes. This is due to a lack of alternative food sources and potentially more carcasses within 188 the landscape as many individuals succumb to the harsh conditions of winter [33, 42, 57-59]. 189 However, it is also likely that during winter carcasses are harder to detect as olfactory cues 190 related to decomposition are lower due to reduced temperatures and decreased 191 invertebrate/microbial scavenging activity [51]. Further still, scavenging rates, activities, and 192 behaviours can also be linked to the life histories of vertebrate scavengers which are also often 193 linked to seasonal considerations such as breeding [60].

194 Seasonal effects (e.g., seasonality in the carrion pool, invertebrate scavenging, and vertebrate 195 scavenging) can have cascading impacts on scavenging dynamics that ultimately determine 196 how long carrion persist within ecosystems [61]. However, despite the strong consensus that scavenging ecology is seasonal, many field-based studies still fail to sufficiently consider the 197 198 seasons, or replicate studies across all seasons [62]. A common field approach in scavenging 199 ecology is to sample and/or monitor only during two seasons of interest (e.g., hot and cold, or 200 wet and dry, or breeding and non-breeding) [32, 38, 63, 64]. This method overlooks the 201 importance of each of the seasons and simplifies the complexities of each, especially with 202 regards to scavenging dynamics that may occur in response to breeding, migrations, and/or 203 rapid vegetative change [32].

In response to this and other poor study designs, Schoenly et al. (2015) defined the successful design of any robust field study in carrion ecology as those that simultaneously accounted for temporal aspects, spatial aspects, and sample size, in conjunction with a suite of other minor considerations [62]. Temporal considerations are important to account for seasonal effects and variability over time [32, 62]. Spatial aspects can be equally as important when designing a field study so that enough natural and environmental variation is covered in order to sufficiently characterise a given ecosystem, as well as to consider spatial independence between monitored carcasses. Sample size is especially important in scavenging ecology to ensure there is enough independent units (i.e., carcasses) within a study to facilitate adequate seasonal replications and ultimately yield statistically and ecologically valid and meaningful results.

### 214 Scavenging in Australia

215 Australia is home to a plethora of unique ecosystems that support equally unique scavenger 216 guilds. These diverse ecosystems exemplify the need to conduct ecological research in a 217 systematic manner for each differing ecosystem and across ecologically relevant temporal 218 (seasonal) and spatial scales [65]. This is particularly true given Australia's position in the 219 southern hemisphere and the literary bias for ecological (including scavenging) research in 220 northern hemisphere systems [66]. Further still, when considering the already highly variable 221 spatial, temporal, and interspecific nature of scavenging ecology, the Australian context only 222 exacerbates these complexities.

223 Despite this clear need for comprehensive studies, very little work has been done to extensively 224 describe scavenging ecology in Australia and understand its current context. Indeed, research, 225 thus far, has mostly focussed on imbedded topics within the scavenging field given the varied 226 motivations of different researchers and research groups. One area that has received 227 considerable attention is scavenging dynamics at the interface between the marine and 228 terrestrial environments. This is logical given Australia's extensive coastlines and potential for 229 harbouring considerable quantities of wave-swept carrion. Much of the work done here has 230 focused on the community structure and assemblage of beach scavenger guilds including 231 mammals, birds, and crustations, as well as how invasive species may impact the scavenging 232 dynamics of such guilds [67-73].

233 The impacts of invasive species have warranted widespread attention not only on Australia's 234 beaches and/or in the context of scavenging ecology, but also in many fields of ecology. In 235 addition to the beach-based studies mentioned above, extensive work has also been done on 236 invasive species including the cane toad (*Rhinella marina*), red fox (*Vulpes vulpes*), and feral 237 cat (Felis catus). Cane toads have invaded much of northern eastern Australia and are rapidly 238 expanding their range west and south [74, 75]. The invasive toads are highly toxic to native 239 predators and/or scavengers that consume them. Consequently, this toxicity has significant 240 potential to alter scavenging rates and scavenger guilds via a somewhat novel pathway that 241 considers carcass species rather than scavenger species [76, 77]. Red fox and feral cat 242 scavenging have also received some attention within Australian ecosystems for their abilities 243 to alter interspecific interactions and scavenging dynamics surrounding carrion [64, 67, 68, 244 78].

245 Aside from the impacts imposed by invasive scavengers, native apex predators are the other 246 highly influential scavenging taxa in Australia. Because of their status as a keystone species, 247 the dingo (Canis dingo) and Tasmanian devil (Sarcophilus harrisii) are dominant scavengers 248 on mainland Australia and Tasmania (an island state of Australia), respectively. Much of the 249 scavenging work on these species, with some exceptions [39, 64, 79, 80], has largely been 250 observational in nature, especially so for the dingo which, until recently, had been subject to 251 very few studies describing their scavenging activity [79, 81-83]. The Tasmanian devil is 252 recognised as a prolific scavenger, being one of the few terrestrial vertebrates globally (other 253 than vultures) thought to rely largely on a diet of carrion [84]. As such, the scavenger guilds of 254 Tasmania are highly unique, and their research has largely focussed on how the Tasmanian 255 devil drives scavenging dynamics [39, 84, 85]. Due to the transmissible devil facial tumour 256 disease (DFTD), and the associated catastrophic population declines, much of the work done on the Tasmanian devil has focused on understanding the diseases properties. Consequently, 257

the scavenging rates and activities of Tasmanian devils remains relatively speculative [84, 8688], and indeed, existing scavenging based research has largely considered how such
population declines may change Tasmanian scavenger guilds and scavenging dynamics [39,
85].

262 Other areas covered with regards to scavenging in Australia include forensically important 263 scavenging activities [89, 90], lead poisoning of scavengers [91-94], anthropogenic carrion 264 subsidies [64, 78, 95, 96], and invertebrate scavenging dynamics [97-101]. With scavenging 265 ecology being a new and emerging field, the number of studies done, thus far, in Australia is 266 small. In addition, very few studies have been undertaken with adequate sample sizes and/or 267 accounted for spatial and temporal aspects [62]. It is also difficult to make inferences from the 268 findings of existing studies in the absence of the relevant natural history of scavenging in 269 Australia broadly, and more specifically for each of its ecosystems [102].

#### 270 Scavenging in the Australian Alps

Despite only encompassing 0.16% of Australia's total land mass, the Australian Alps is a 271 272 unique and diverse ecosystem. This region has highly variable terrain ranging from steep 273 mountain peaks to flat alpine plains and includes many of the highest peaks and ranges within 274 Australia's Great Dividing Range, including Australia's highest peak – Mount Kosciuszko. As 275 a consequence of the terrain, the landscape has evolved to become delineated into three 276 altitudinally distinct ecological communities - montane (500m-1500m), subalpine (1500m-277 1850m), and alpine (1850m-2228m) [66]. Each of these communities are highly seasonal with 278 the temperatures experienced throughout the course of a year differing by up to  $50^{\circ}$ C (- $10^{\circ}$ C – 279 40°C). During winter much of the landscape can be covered in snow, but by the following 280 summer the same landscape can experience intense bushfires, such as those during the 2019-281 2020 Australian bushfire season [103]. With extreme weather events expected to become more

frequent and severe, many of Australia's native alpine flora and fauna species are at risk to a rapidly changing climate in an already highly variable and vulnerable environment [104].

284 Despite being a highly volatile landscape, a vertebrate scavenger guild has become established 285 within the Australia Alps. This native guild is primarily composed of dingoes (*Canis dingo*) 286 and wedge-tailed eagles (Aquila audax) – apex predators; spotted-tail quolls (Dasyurus 287 maculatus) - mesopredator; brushtail possums (Trichosurus vulpecula), raven spp. (Corvus 288 coronoides and Corvus mellori), and pied currawongs (Strepera graculina) - facultative 289 scavengers. Whilst no study to date has holistically described the scavenging dynamics of the 290 Australian alpine guild, species specific scavenging has been described both within the Alps 291 and elsewhere in Australia [64, 79, 99, 105]. Invasive species also play a significant role within 292 the Australian alpine scavenger guild. Feral pigs (Sus scrofa), whose detrimental impacts are 293 largely attributed to ground rooting [106], are also pervasive scavengers in Australia's alpine 294 regions [99]. The invasive red fox and feral cat are likely two of the greatest threats to 295 Australia's native mammals, marsupials, and birds [107]. Both these invasive species, 296 however, do not exclusively hunt and are capable scavengers [64, 108]. In conjunction, the 297 detrimental impacts of these three invasive scavengers, could have widescale effects on 298 scavenging dynamics and the availability and persistence of carcasses within the Australian 299 Alps, especially so regarding feral pigs which are capable of consuming an entire carcass in 300 one scavenging bout. Many studies have demonstrated that dingoes can benefit the broader 301 Australian environment by suppressing red fox and feral cat populations despite their invasive 302 nature [109-111]. Therefore, a similar dynamic might be occurring in the Australia Alps, 303 specifically surrounding carrion. This could provide novel evidence for the regulation of an 304 invasive mesopredator population by a native apex predator within a scavenging context.

305

#### 307 Aims and hypotheses

308 Carrion, in of itself, adds substance to the phrase 'life after death'. This is because even after 309 the death of an animal its carcass can become a focal point within an ecosystem for a whole 310 host of organisms. It is for these reasons that carrion can be used to specifically examine 311 scavenging ecology. Within this thesis, the complex environmental dimensions (seasonality 312 and altitude) of the Australian Alps were utilised to conduct a comprehensive and systematic 313 analysis of this model ecosystems scavenging dynamics. To conform with the design principles 314 set out by Schoenly et al. (2015), a long transect was utilised to adequately capture enough 315 natural and altitudinal variability in the Australian Alps (spatial aspect). Along this transect, 15 316 spatially independent carcasses were monitored per season (60 total), to account for seasonal 317 effects (temporal aspect), and this yielded statistically and ecologically relevant findings of 318 scavenging dynamics. Therefore, this thesis provides one of the first comprehensive analyses 319 of scavenging dynamics for an understudied Australian ecosystem and demonstrates a robust 320 and repeatable study design valuable to understanding scavenging ecology globally.

321 The second chapter of the thesis will investigate how the seasons affect scavenging dynamics 322 in the Australian Alps. Specifically, seasonal effects will be assessed to determine how they 323 affect four vertebrate scavenging variables: scavenger species richness/composition, time to 324 first arrival and scavenging at a carcass, scavenger activity (i.e., probability of a scavenger 325 investigating vs scavenging a carcass), and time spent investigating and scavenging a carcass. 326 Broadly, it is predicted that the seasonal effects will significantly impact most if not all of the 327 scavenging variables, most notably during summer and winter when thermal extremes are at 328 their peak. More detailed hypotheses are provided in *Chapter 2*.

The third chapter explores the top-down scavenging effects of an apex predator. Much of the literature describes the interspecific interactions of apex predators with mesopredators [25, 40, 45, 46, 48, 112, 113]. However, little is known about the interspecific interactions apex predators have with subordinate facultative scavengers considered potential prey species. In the Australian Alps, the dingo is the apex (scavenging) predator, and thus, may be exerting topdown scavenging effects on subordinate facultative scavengers such as the brushtail possum and raven spp., which were demonstrated to be the most common scavengers in *Chapter 2*. It is expected that brushtail possums, and to a lesser degree raven spp., may use a suite of spatial, temporal, and behavioural methods to avoid confrontations with dingoes surrounding carrion. More detailed hypotheses are provided in *Chapter 3*.

#### 339 Implications

340 In addition to providing a comprehensive account for the scavenging dynamics of the 341 Australian Alps, the findings of this thesis are relevant to environmental managers. The 342 Australian Alps are home to a plethora of invasive animal species including feral 343 horses/brumbies (*Equus ferus caballus*), various deer species, feral pigs (*Sus scrofa*), red foxes 344 (Vulpes vulpes), feral cats (Felis catus), feral goats (Capra hircus), and feral rabbits 345 (Oryctolagus cuniculus). As such, extensive management practices are routinely undertaken to 346 control the populations of these species and their negative impacts on the fragile Australian 347 alpine ecosystem. Often, many of these operations leave culled animal carcasses in situ to 348 decay, and this provides a sudden influx of available energy and nutrient within the landscape. 349 Therefore, the Australian Alps may at times harbour high rates of carrion biomass.

Scavengers provide vital ecosystem services valuable to both the natural and human environment, the latter of which is often overlooked. To take advantage of these services, the findings of this thesis may assist in determining when (i.e., which season) invasive species management practices should occur. Firstly, many of the key invasive species in the Australian Alps (feral pigs, red foxes, and feral cats) are scavengers. Therefore, management programs have the potential to supplement and support such invasive species populations by increasing carrion biomass, and thus, nullifying control efforts. Using my findings to determine the 357 seasons in which native scavenging rates and invasive scavenging rates are highest and lowest 358 respectively may reduce the chance of such a counterintuitive result. Secondly, in addition to 359 the natural/environmental features of the Australian Alps there is also a complex human 360 dimension. The Australian Alps is home to many popular recreational pursuits and as such has 361 become a tourism hotspot within Australia [114]. Therefore, the faster processing and 362 decomposition times of carcasses, as facilitated by the scavenger guild during their most 363 efficient seasons, would be beneficial to the overall environmental aesthetics of the Australian 364 Alps as perceived by humans.

365 This thesis will provide an ecological context for the natural history of scavenging dynamics in the Australian Alps. Using this ecosystem, one previously ignored, our findings will 366 supplement the relatively new literary foundation of scavenging ecology. In addition to the 367 368 ecological findings, it is also anticipated that this thesis will set a new standard for field-based 369 scavenging research. The methods used here, specifically regarding the temporal scales and 370 sample sizes used, if adopted by future studies at a minimum, can adequately describe localised 371 scavenging dynamics within any given ecosystem, thus, facilitating the advancement and our 372 understanding of scavenging ecology globally.

373

374

- 375
- 376
- 377

## 379 **References**

| 380 | 1. | Barton, P.S., et al., Towards quantifying carrion biomass in ecosystems. Trends in |
|-----|----|------------------------------------------------------------------------------------|
| 381 |    | ecology & evolution, 2019.                                                         |

- 382 2. Barton, P., et al., *The role of carrion in maintaining biodiversity and ecological*
- 383 processes in terrestrial ecosystems. Oecologia, 2013. 171(4): p. 761-772.
- 384 3. Wilson, E.E. and E.M. Wolkovich, *Scavenging: how carnivores and carrion structure*385 *communities.* Trends in Ecology & Evolution, 2011. 26(3): p. 129-135.
- 386 4. Bar-On, Y.M., R. Phillips, and R. Milo, *The biomass distribution on Earth*.
- 387 Proceedings of the National Academy of Sciences, 2018. **115**(25): p. 6506-6511.
- 388 5. Moore, J.C., et al., *Detritus, trophic dynamics and biodiversity*. Ecology Letters,
  389 2004. 7(7): p. 584-600.
- Crippen, T.L., M.E. Benbow, and J.L. Pechal, *Microbial interactions during carrion decomposition*. Carrion ecology, evolution, and their applications, 2015: p. 31-64.
- 392 7. Carter, D.O., D. Yellowlees, and M. Tibbett, *Cadaver decomposition in terrestrial*393 *ecosystems*. Naturwissenschaften, 2007. 94(1): p. 12-24.
- Moleón, M., et al., *Carrion availability in space and time*, in *Carrion ecology and management*. 2019, Springer. p. 23-44.
- 396 9. Gende, S.M., et al., *Magnitude and fate of salmon-derived nutrients and energy in a*397 *coastal stream ecosystem.* Journal of Freshwater Ecology, 2004. 19(1): p. 149-160.
- Naiman, R.J., et al., *Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems.* Ecosystems, 2002. 5(4): p. 399-417.
- 400 11. Gende, S.M., et al., Pacific salmon in aquatic and terrestrial ecosystems: Pacific
- 401 salmon subsidize freshwater and terrestrial ecosystems through several pathways,
- 402 which generates unique management and conservation issues but also provides
- 403 *valuable research opportunities.* BioScience, 2002. **52**(10): p. 917-928.

| 404 | 12. | Hilderbrand, G.V., et al., Role of brown bears (Ursus arctos) in the flow of marine     |
|-----|-----|-----------------------------------------------------------------------------------------|
| 405 |     | nitrogen into a terrestrial ecosystem. Oecologia, 1999. 121(4): p. 546-550.             |
| 406 | 13. | Helfield, J.M. and R.J. Naiman, Effects of salmon-derived nitrogen on riparian forest   |
| 407 |     | growth and implications for stream productivity. Ecology, 2001. 82(9): p. 2403-2409.    |
| 408 | 14. | Fujiwara, M. and R.C. Highsmith, Harpacticoid copepods: potential link between          |
| 409 |     | inbound adult salmon and outbound juvenile salmon. Marine Ecology Progress              |
| 410 |     | Series, 1997. <b>158</b> : p. 205-216.                                                  |
| 411 | 15. | Clevenger, A.P., B. Chruszcz, and K.E. Gunson, Spatial patterns and factors             |
| 412 |     | influencing small vertebrate fauna road-kill aggregations. Biological conservation,     |
| 413 |     | 2003. <b>109</b> (1): p. 15-26.                                                         |
| 414 | 16. | Coffin, A.W., From roadkill to road ecology: a review of the ecological effects of      |
| 415 |     | roads. Journal of transport Geography, 2007. 15(5): p. 396-406.                         |
| 416 | 17. | Loss, S.R., T. Will, and P.P. Marra, Estimation of bird-vehicle collision mortality on  |
| 417 |     | US roads. The Journal of Wildlife Management, 2014. 78(5): p. 763-771.                  |
| 418 | 18. | Forman, R.T. and L.E. Alexander, Roads and their major ecological effects. Annual       |
| 419 |     | review of ecology and systematics, 1998. <b>29</b> (1): p. 207-231.                     |
| 420 | 19. | Englefield, B., M. Starling, and P. McGreevy, A review of roadkill rescue: who cares    |
| 421 |     | for the mental, physical and financial welfare of Australian wildlife carers? Wildlife  |
| 422 |     | Research, 2018. 45(2): p. 103-118.                                                      |
| 423 | 20. | Fey, S.B., et al., Recent shifts in the occurrence, cause, and magnitude of animal mass |
| 424 |     | mortality events. Proceedings of the National Academy of Sciences, 2015. 112(4): p.     |
| 425 |     | 1083-1088.                                                                              |

- 426 21. Parmenter, R.R. and J.A. MacMahon, *Carrion decomposition and nutrient cycling in*427 *a semiarid shrub–steppe ecosystem.* Ecological Monographs, 2009. **79**(4): p. 637-661.
- 428 22. Zimmer, M., *Detritus*. General ecology, 2008. **2**: p. 903-911.

- 429 23. Morales-Reyes, Z., et al., *Farmer Perceptions of the Ecosystem Services Provided by*430 *Scavengers: What, Who, and to Whom.* Conservation Letters, 2018. 11(2): p. e12392.
- 431 24. DeVault, T.L., J. Rhodes, Olin E, and J.A. Shivik, *Scavenging by vertebrates:*
- 432 *behavioral, ecological, and evolutionary perspectives on an important energy transfer*
- 433 *pathway in terrestrial ecosystems.* Oikos, 2003. **102**(2): p. 225-234.
- 434 25. Ritchie, E.G. and C.N. Johnson, *Predator interactions, mesopredator release and*435 *biodiversity conservation.* Ecology letters, 2009. 12(9): p. 982-998.
- 436 26. Reeves, N.M., *Taphonomic effects of vulture scavenging*. Journal of Forensic
- 437 Sciences, 2009. **54**(3): p. 523-528.
- 438 27. Beasley, J.C., et al., *Ecological functions of vertebrate scavenging*, in *Carrion*439 *ecology and management*. 2019, Springer. p. 125-157.
- Ruxton, G.D. and D.C. Houston, *Obligate vertebrate scavengers must be large soaring fliers*. Journal of theoretical biology, 2004. 228(3): p. 431-436.
- 442 29. Dermody, B.J., C.J. Tanner, and A.L. Jackson, *The evolutionary pathway to obligate*443 *scavenging in Gyps vultures.* PloS one, 2011. 6(9): p. e24635.
- 444 30. Cortés-Avizanda, A., et al., *Bird sky networks: How do avian scavengers use social*445 *information to find carrion?* Ecology, 2014. **95**(7): p. 1799-1808.
- 446 31. Ogada, D.L., F. Keesing, and M.Z. Virani, Dropping dead: causes and consequences
- *of vulture population declines worldwide.* Annals of the New York Academy of
  Sciences, 2012. **1249**(1): p. 57-71.
- 449 32. Selva, N. and M.A. Fortuna, *The nested structure of a scavenger community*.
- 450 Proceedings of the Royal Society B: Biological Sciences, 2007. **274**(1613): p. 1101-
- 451 1108.
- 452 33. Selva, N., et al., *Factors affecting carcass use by a guild of scavengers in European*453 *temperate woodland*. Canadian Journal of Zoology, 2005. 83(12): p. 1590-1601.

- 454 34. Wallach, A.D., et al., *What is an apex predator?* Oikos, 2015. **124**(11): p. 1453-1461.
- 455 35. Prugh, L.R., et al., *The rise of the mesopredator*. Bioscience, 2009. **59**(9): p. 779-791.
- 456 36. Soulé, M.E., et al., Reconstructed dynamics of rapid extinctions of chaparral-
- 457 *requiring birds in urban habitat islands*. Conservation Biology, 1988. **2**(1): p. 75-92.
- 458 37. Crooks, K.R. and M.E. Soulé, *Mesopredator release and avifaunal extinctions in a*
- 459 *fragmented system.* Nature, 1999. **400**(6744): p. 563-566.
- 460 38. Morales-Reyes, Z., et al., *Scavenging efficiency and red fox abundance in*
- 461 *Mediterranean mountains with and without vultures.* Acta Oecologica, 2017. **79**: p.
- 462 **81-88**.
- 463 39. Cunningham, C.X., et al., *Top carnivore decline has cascading effects on scavengers*464 *and carrion persistence*. Proceedings of the Royal Society B, 2018. 285(1892): p.
  465 20181582.
- 466 40. Sivy, K.J., et al., *Apex predators and the facilitation of resource partitioning among*467 *mesopredators*. Oikos, 2018. **127**(4): p. 607-621.
- 468 41. Pereira, L.M., N. Owen-Smith, and M. Moleón, *Facultative predation and scavenging*469 *by mammalian carnivores: Seasonal, regional and intra-guild comparisons.* Mammal
- 470 Review, 2014. **44**(1): p. 44-55.
- 471 42. Wilmers, C.C., et al., *Trophic facilitation by introduced top predators: grey wolf*
- 472 *subsidies to scavengers in Yellowstone National Park.* Journal of Animal Ecology,
- 473 2003. **72**(6): p. 909-916.
- 474 43. Moleón, M., et al., *Inter-specific interactions linking predation and scavenging in*
- 475 *terrestrial vertebrate assemblages.* Biological Reviews, 2014. **89**(4): p. 1042-1054.
- 476 44. Gutiérrez-Cánovas, C., et al., Large home range scavengers support higher rates of
- 477 *carcass removal.* Functional Ecology, 2020. **34**(9): p. 1921-1932.

- 478 45. Allen, M.L., et al., *Trophic facilitation or limitation? Comparative effects of pumas*479 *and black bears on the scavenger community.* PLoS One, 2014. 9(7): p. e102257.
- 480 46. Krofel, M., I. Kos, and K. Jerina, *The noble cats and the big bad scavengers: effects*481 *of dominant scavengers on solitary predators.* Behavioral Ecology and Sociobiology,
- 482 2012. **66**(9): p. 1297-1304.
- 483 47. Hilborn, A., et al., *Cheetahs modify their prey handling behavior depending on risks*484 *from top predators.* Behavioral ecology and sociobiology, 2018. 72(4): p. 1-10.
- 485 48. Wang, Y., M.L. Allen, and C.C. Wilmers, *Mesopredators display behaviourally*
- 486 plastic responses to dominant competitors when scavenging and communicating.
  487 bioRxiv, 2020.
- 488 49. Selva, N., et al., *Vertebrate scavenging communities*, in *Carrion Ecology and*489 *Management*. 2019, Springer. p. 71-99.
- 490 50. Olson, Z.H., et al., *Scavenger community response to the removal of a dominant*491 *scavenger*. Oikos, 2012. **121**(1): p. 77-84.
- 492 51. DeVault, T.L. and O.E. Rhodes, *Identification of vertebrate scavengers of small*493 *mammal carcasses in a forested landscape.* Acta Theriologica, 2002. 47(2): p. 185-
- 494 192.
- 495 52. DeVault, T.L., J.I.L. Brisbin, and J.O.E. Rhodes, *Factors influencing the acquisition*496 *of rodent carrion by vertebrate scavengers and decomposers*. Canadian Journal of
  497 Zoology, 2004. 82(3): p. 502-509.
- 498 53. Moreno-Opo, R. and A. Margalida, *Carcasses provide resources not exclusively to*499 *scavengers: patterns of carrion exploitation by passerine birds*. Ecosphere, 2013.
- 500 **4**(8): p. 1-15.
- 501 54. Anderson, G.S., et al., *Invertebrate scavenging communities*, in *Carrion Ecology and*502 *Management*. 2019, Springer. p. 45-69.

| 503 | 55. | Anderson, G.S., J. Byrd, and J. Castner, Insect succession on carrion and its         |
|-----|-----|---------------------------------------------------------------------------------------|
| 504 |     | relationship to determining time of death. Forensic entomology: the utility of        |
| 505 |     | arthropods in legal investigations, 2001. 143: p. 76.                                 |
| 506 | 56. | Ray, RR., H. Seibold, and M. Heurich, Invertebrates outcompete vertebrate             |
| 507 |     | facultative scavengers in simulated lynx kills in the Bavarian Forest National Park,  |
| 508 |     | Germany. Animal Biodiversity and Conservation, 2014. 37(1): p. 77-88.                 |
| 509 | 57. | Selva, N., et al., Scavenging on European bison carcasses in Bialowieza primeval      |
| 510 |     | forest (eastern Poland). Ecoscience, 2003. 10(3): p. 303-311.                         |
| 511 | 58. | Jedrzejewska, B. and W. Jedrzejewski, Predation in vertebrate communities: the        |
| 512 |     | Bialowieza Primeval Forest as a case study. Vol. 135. 1998: Springer Science &        |
| 513 |     | Business Media.                                                                       |
| 514 | 59. | Flint, P.L., et al., Estimating carcass persistence and scavenging bias in a human-   |
| 515 |     | influenced landscape in western Alaska. Journal of Field Ornithology, 2010. 81(2): p. |
| 516 |     | 206-214.                                                                              |
| 517 | 60. | White, T.C., The significance of unripe seeds and animal tissues in the protein       |
| 518 |     | nutrition of herbivores. Biological Reviews, 2011. 86(1): p. 217-224.                 |
| 519 | 61. | Forbes, S.L. and D.O. Carter, Processes and mechanisms of death and decomposition     |
| 520 |     | of vertebrate carrion. Carrion ecology, evolution, and their applications. CRC Press, |
| 521 |     | Boca Raton, 2015. 512.                                                                |
| 522 | 62. | Schoenly, K.G., J. Michaud, and G. Moreau, Design and analysis of field studies in    |
| 523 |     | carrion ecology. Carrion ecology, evolution, and their applications. CRC Press, Boca  |
| 524 |     | Raton, 2015: p. 129-148.                                                              |
| 525 | 63. | Turner, K.L., et al., Abiotic and biotic factors modulate carrion fate and vertebrate |
| 526 |     | scavenging communities. Ecology, 2017. 98(9): p. 2413-2424.                           |

- 527 64. Forsyth, D.M., et al., *How does a carnivore guild utilise a substantial but*
- 528 *unpredictable anthropogenic food source? Scavenging on hunter-shot ungulate*
- 529 carcasses by wild dogs/dingoes, red foxes and feral cats in south-eastern Australia
  530 revealed by camera traps. PLoS One, 2014. 9(6): p. e97937.
- 531 65. Westoby, M., *Comparing Australian ecosystems to those elsewhere*. BioScience,
- 532 1988. **38**(8): p. 549-556.
- Martin, L.J., B. Blossey, and E. Ellis, *Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations*. Frontiers in Ecology and the
  Environment, 2012. 10(4): p. 195-201.
- 536 67. Bingham, E.L., et al., *Functional plasticity in vertebrate scavenger assemblages in*537 *the presence of introduced competitors*. Oecologia, 2018. 188(2): p. 583-593.
- 538 68. Brown, M.B., et al., *Invasive carnivores alter ecological function and enhance*539 *complementarity in scavenger assemblages on ocean beaches*. Ecology, 2015. 96(10):
  540 p. 2715-2725.
- 541 69. Huijbers, C.M., et al., Functional replacement across species pools of vertebrate
- 542 scavengers separated at a continental scale maintains an ecosystem function.

543 Functional Ecology, 2016. **30**(6): p. 998-1005.

- 544 70. Huijbers, C.M., et al., *Limited functional redundancy in vertebrate scavenger guilds*545 *fails to compensate for the loss of raptors from urbanized sandy beaches*. Diversity
  546 and Distributions, 2015. 21(1): p. 55-63.
- 547 71. Huijbers, C.M., et al., *Urbanisation alters processing of marine carrion on sandy*548 *beaches*. Landscape and Urban Planning, 2013. 119: p. 1-8.
- 549 72. Schlacher, T.A., S. Strydom, and R.M. Connolly, *Multiple scavengers respond*
- 550 *rapidly to pulsed carrion resources at the land–ocean interface.* Acta Oecologica,
- 551 2013. **48**: p. 7-12.

- 552 73. Schlacher, T.A., et al., *Donor-control of scavenging food webs at the land-ocean*553 *interface*. PloS one, 2013. 8(6): p. e68221.
- 554 74. Phillips, B.L., et al., *Rapid expansion of the cane toad (Bufo marinus) invasion front*555 *in tropical Australia*. Austral Ecology, 2007. **32**(2): p. 169-176.
- 556 75. Kearney, M., et al., *Modelling species distributions without using species*
- 557 *distributions: the cane toad in Australia under current and future climates.*
- 558 Ecography, 2008. **31**(4): p. 423-434.
- 559 76. Pettit, L., G. Ward-Fear, and R. Shine, A biological invasion impacts ecosystem
- 560 services: cane toads change the rate of scavenging and the suite of scavengers.
- 561 Ecosphere, 2021. **12**(5): p. e03488.
- 562 77. Beckmann, C. and R. Shine, *Toad's tongue for breakfast: exploitation of a novel prey*
- 563 *type, the invasive cane toad, by scavenging raptors in tropical Australia*. Biological
  564 Invasions, 2011. **13**(6): p. 1447-1455.
- 565 78. Spencer, E.E., et al., *Carcasses attract invasive species and increase artificial nest*566 *predation in a desert environment.* Global Ecology and Conservation, 2021. 27: p.
  567 e01588.
- 568 79. Spencer, E. and T. Newsome, *Dingoes dining with death*. Australian Zoologist, 2021.
- 569 80. Fielding, M.W., et al., *Dominant carnivore loss benefits native avian and invasive*570 *mammalian scavengers.* bioRxiv, 2021.
- 571 81. Meek, P. and S. Brown, *It's a dog eat dog world: observations of dingo (Canis*
- *familiaris) cannibalism*. Australian Mammalogy, 2016. **39**(1): p. 92-94.
- 573 82. Allen, B.L., Skin and bone: observations of dingo scavenging during a chronic food
- 574 *shortage*. Australian Mammalogy, 2010. **32**(2): p. 207-208.

- Behrendorff, L., L.K.-P. Leung, and B.L. Allen, *Utilisation of stranded marine fauna washed ashore on K'gari (Fraser Island), Australia, by dingoes.* Australian Journal of
  Zoology, 2018. 66(2): p. 128-138.
- 57884.Andersen, G.E., et al., Activity and social interactions in a wide-ranging specialist579scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animal-borne
- 580 *video collars.* Plos one, 2020. **15**(3): p. e0230216.
- 581 85. Fielding, M.W., et al., *Roadkill islands: carnivore extinction shifts seasonal use of*582 *roadside carrion by generalist avian scavenger*. Journal of Animal Ecology, 2021. 90:
  583 p. 2268–2276.
- 584 86. Hawkins, C.E., et al., *Emerging disease and population decline of an island endemic,*585 *the Tasmanian devil Sarcophilus harrisii.* Biological Conservation, 2006. 131(2): p.
  586 307-324.
- 587 87. McCallum, H., et al., *Distribution and impacts of Tasmanian devil facial tumor*588 *disease*. EcoHealth, 2007. 4(3): p. 318-325.
- 589 88. McCallum, H., et al., *Transmission dynamics of Tasmanian devil facial tumor disease*590 *may lead to disease-induced extinction*. Ecology, 2009. **90**(12): p. 3379-3392.
- S91 89. O'Brien, R.C., et al., *A preliminary investigation into the scavenging activity on pig carcasses in Western Australia*. Forensic Science, Medicine, and Pathology, 2007.
- **3**(3): p. 194-199.
- 594 90. O'Brien, R.C., et al., Forensically significant scavenging guilds in the southwest of
- 595 *Western Australia*. Forensic Science International, 2010. **198**(1-3): p. 85-91.
- 596 91. Lohr, M.T., et al., *Completing a worldwide picture: preliminary evidence of lead*
- 597 *exposure in a scavenging bird from mainland Australia*. Science of the Total
- 598 Environment, 2020. **715**: p. 135913.

- 599 92. Woodford, L.P., D.M. Forsyth, and J.O. Hampton, *Scavenging birds at risk of*
- 600 ingesting fragments of lead bullets from kangaroo and deer carcasses in south-
- 601 *eastern Australia*. Australian Field Ornithology, 2020. **37**: p. 112-116.
- 602 93. Hivert, L., et al., *High blood lead concentrations in captive Tasmanian devils*
- 603 (Sarcophilus harrisii): a threat to the conservation of the species? Australian
- 604 veterinary journal, 2018. **96**(11): p. 442-449.
- Hampton, J.O., et al., *A comparison of fragmenting lead-based and lead-free bullets for aerial shooting of wild pigs.* PloS one, 2021. 16(3): p. e0247785.
- 607 95. Rees, J.D., et al., *Direct and indirect effects of carrion subsidies in an arid rangeland:*
- 608 *Carrion has positive effects on facultative scavengers and negative effects on a small* 609 *songbird.* Journal of Arid Environments, 2020. **179**: p. 104174.
- 610 96. Read, J. and D. Wilson, *Scavengers and detritivores of kangaroo harvest offcuts in*611 *arid Australia.* Wildlife Research, 2004. **31**(1): p. 51-56.
- 612 97. Barton, P.S. and M.J. Evans, *Insect biodiversity meets ecosystem function: differential*
- 613 *effects of habitat and insects on carrion decomposition.* Ecological Entomology,
- 614 2017. **42**(3): p. 364-374.
- 615 98. Barton, P.S., H.J. Weaver, and A.D. Manning, Contrasting diversity dynamics of
- 616 *phoretic mites and beetles associated with vertebrate carrion.* Experimental and
- 617 Applied Acarology, 2014. **63**(1): p. 1-13.
- 618 99. Spencer, E.E., et al., *Invasive European wasps alter scavenging dynamics around*619 *carrion*. Food Webs, 2020: p. e00144.
- 620 100. Lang, M., G. Allen, and B. Horton, *Blowfly succession from possum (Trichosurus*
- 621 *vulpecula*) *carrion in a sheep-farming zone*. Medical and Veterinary Entomology,
- 622 2006. **20**(4): p. 445-452.

- 623 101. Evans, M.J., J.F. Wallman, and P.S. Barton, *Traits reveal ecological strategies*
- *driving carrion insect community assembly*. Ecological Entomology, 2020. 45(5): p.
  966-977.
- 626 102. Weiner, J., On the practice of ecology. Journal of Ecology, 1995. 83(1): p. 153-158.
- 627 103. Ward, M., et al., *Impact of 2019–2020 mega-fires on Australian fauna habitat*. Nature
  628 Ecology & Evolution, 2020. 4(10): p. 1321-1326.
- 629 104. National Academies of Sciences, E. and Medicine, *Attribution of extreme weather*630 *events in the context of climate change*. 2016: National Academies Press.
- 631 105. Newsome, T.M. and E.E. Spencer, *Megafires attract avian scavenging but carcasses*632 *still persist.* Diversity and Distributions, 2021.
- Hone, J., Feral pigs in Namadgi National Park, Australia: dynamics, impacts and *management*. Biological Conservation, 2002. 105(2): p. 231-242.
- bickman, C.R., *Impact of exotic generalist predators on the native fauna of Australia*.
  Wildlife Biology, 1996. 2(3): p. 185-195.
- 637 108. Brown, O., J. Field, and M. Letnic, Variation in the taphonomic effect of scavengers
- 638 *in semi-arid Australia linked to rainfall and the El Niño Southern Oscillation.*
- 639 International Journal of Osteoarchaeology, 2006. **16**(2): p. 165-176.
- 640 109. Letnic, M. and F. Koch, Are dingoes a trophic regulator in arid Australia? A
- 641 *comparison of mammal communities on either side of the dingo fence.* Austral
  642 Ecology, 2010. **35**(2): p. 167-175.
- 643 110. Letnic, M., E.G. Ritchie, and C.R. Dickman, Top predators as biodiversity
- 644 *regulators: the dingo Canis lupus dingo as a case study.* Biological Reviews, 2012.
- 645 **87**(2): p. 390-413.
- 646 111. Glen, A.S., et al., *Evaluating the role of the dingo as a trophic regulator in Australian*647 *ecosystems*. Austral Ecology, 2007. **32**(5): p. 492-501.
- 648 112. Newsome, T.M., et al., *Top predators constrain mesopredator distributions*. Nature
  649 communications, 2017. 8(1): p. 1-7.
- 650 113. Letnic, M., et al., Does a top predator suppress the abundance of an invasive
- *mesopredator at a continental scale*? Global Ecology and Biogeography, 2011. 20(2):
  p. 343-353.
- 653 114. Pickering, C.M., J. Harrington, and G. Worboys, *Environmental impacts of tourism*
- 654 *on the Australian Alps protected areas.* Mountain Research and Development, 2003.
- 655 **23**(3): p. 247-254.

# Chapter 2 – Carcass use by mesoscavengers drives seasonal shifts in scavenging dynamics

# 3 Abstract

4 Carrion is a high energy and nutrient rich resource that attracts a diverse group of vertebrate 5 scavengers and consequently can be utilised as a focal point within an ecosystem to assess 6 scavenging dynamics. Despite the carrion pool being highly seasonal, many studies utilising 7 carrion to investigate scavenging dynamics, have neglected to account for seasonal effects. 8 Therefore, using the highly seasonal Australian alpine ecosystem, carrion deployed 9 experimentally each season were utilised to assess vertebrate scavenging dynamics. Time to first detection of carcasses by vertebrate scavengers was longer during summer, likely a 10 11 product of increased invertebrate scavenging rates and an abundance of other available food 12 sources. Scavenging was more likely than investigation of carcasses during winter and spring. 13 During winter, this trend was driven by an increase in brushtail possum scavenging which 14 accounted for 78% of all scavenging events and was likely in response to a scarcity of other 15 food sources. Conversely, during spring, scavenging was more likely as the scavenging rates 16 of raven species increased four-fold to meet the demands of breeding (i.e., increased energetic 17 requirements, nest construction, and chick rearing). The frequent but brief trips between nest 18 and carcass by raven spp. during the breeding seasons was also likely the reason scavenging 19 events were significantly shorter during spring. These results demonstrate highly seasonal 20 scavenging dynamics in the Australian Alps and supports the importance of seasonal effects in 21 scavenging ecology. However, the findings are unique given seasonal trends in scavenging 22 dynamics were dominated by low-ranking mesoscavengers: the brushtail possum and raven 23 species.

# 24 Introduction

25 Carrion is a valuable ecosystem resource which in contrast to plant-based detritus is high in 26 energy and nutrient rich [1]. Although carrion is spatially and temporally patchy [2, 3], it is 27 exploited by species that have evolved to scavenge. Historically, scavengers have been viewed 28 as 'bottom-feeders', due to associations with rotting matter, disease, and death [4]. But 29 scavenging is present in most taxa, including obligate and facultative large vertebrate 30 scavengers capable of consuming a whole carcass in one feeding event, to invertebrate 31 scavengers that can aggregate around carrion in the thousands [5]. Together, these species form 32 scavenger guilds, which in addition to acting as 'natures clean-up crew' [6], are also important 33 to supporting critical linkages, structure, and stability in food webs [2]; distributing nutrients 34 within and among ecosystems; and providing economic and human health benefits related to 35 carcass disposal and sanitary measures [7].

36 Carrion biomass within an ecosystem fluctuates in response to key modes of death such as 37 predation, but also in response to environmental factors [5, 8]. Seasons are one of the strongest 38 governing environmental forces and can dictate the life histories of many herbivorous and/or 39 migratory species that form a major component of the carrion pool [5, 8-10]. This is because, 40 in highly seasonal environments carrion biomass can become cyclically pulsed towards the 41 ends of harsh and/or prolonged seasons when such species incur increased mortality rates [11]. 42 This is evident in tropical and sub-tropical Africa following wet and dry season cycles [12-14]. 43 For example, each year over 1 million wildebeest (Connochaetes taurins) migrate through the 44 Serengeti Mara ecosystem [15], including through the Mara River, where mass wildebeest 45 drownings occur during its crossing [16, 17]. This sudden annual influx of carrion provides 46 many terrestrial and aquatic scavengers with an abundance of available energy and nutrients 47 [18]. Similar trends are also common in the higher northern latitudes where many ungulate species face increased mortality rates towards the ends of harsh northern winters [19-21]. 48

Season, along with daily temperatures, humidity, and moisture levels can also influence carrion
persistence rates via the effects they have on regulating microbial and insect activity [22-24].

51 It is in response to such seasonal fluctuations in the availability of carrion, that scavengers have 52 adapted and evolved to exploit such a pulsed food resource. Indeed, facultative scavengers have 53 considerable flexibility in their diets regarding both the relative contribution of predated vs 54 scavenged food and meat vs other food sources [25]. For example, the Białowież Forest 55 (Poland) scavenger guild demonstrated increased scavenging rates during winter in response 56 to greater energy expenditure (i.e., keeping warm, traversing snow), carcass availability, and 57 lack of other food sources [26-28]. These dynamics can become even more complex when 58 considering the contrasting seasonality in the life histories of each scavenger species within a 59 guild. For instance, during peak chick rearing season, the energy requirements of herring gulls 60 (Larus argentatus) and lesser black-backed gulls (Larus fuscus) are inherently greater, and 61 consequently both species were less selective of fish species when scavenging fishery discards 62 [29]. A plethora of other environmental, life history, and inter/intra specific factors can also 63 affect species specific scavenging, and thus, add further complexities to scavenging dynamics 64 [30].

65 Despite obvious seasonal trends in scavenging ecology, the experimental designs of many 66 field-based scavenging studies often overlook the impact of seasonal effects [31]. Indeed, it is 67 common to monitor scavenging dynamics surrounding carrion only during two seasons of 68 interest (i.e., hot and cold, or wet and dry, or breeding and non-breeding) [23, 32-36]. Such an 69 approach potentially oversimplifies the ways in which the various dimensions of scavenging 70 ecology can change not only between each of the seasons, but over the course of a year, and 71 even between years [36]. Moreover, some studies completely ignore seasonal effects by only 72 monitoring scavenging dynamics during one season [37-41]. The successful design of any 73 robust field study in carrion ecology should simultaneously accounts for temporal aspects (i.e.,

diel, seasonal, yearly), spatial aspects (i.e., representative of ecosystem, spatially independent),
and sample size, in conjunction with a suite of other minor considerations [31].

76 In this study, the highly seasonal nature of the Australian Alps was exploited to monitor the 77 use of carcasses by vertebrate scavengers. Carcass monitoring was replicated across all four 78 seasons to account for seasonal effects. Such an approach, whilst accounting for environmental 79 variability, provided an opportunity to determining how important the seasons are in 80 influencing scavenger species richness/composition, and to test specific predictions related to 81 (1) the time to first detection and scavenging at a carcass; (2) scavenger activity (i.e., 82 probability of a scavenger investigating vs scavenging a carcass); and (3) the time spent 83 investigating and scavenging a carcass. Accelerated decomposition of carrion during summer 84 as a product of increased invertebrate and microbial activity is known to produce stronger 85 carcass-linked odours [42]. Consequently, it was predicted that increased olfactory cues during 86 summer would result in greater detectability of carrion by vertebrate scavengers, and thus, 87 shorter time to first arrival and scavenging at carcasses. Conversely, despite carrion being less 88 detectible during winter, it was predicted that the probability of vertebrate scavenging would 89 increase, and time spent scavenging would be longest. This prediction was informed by the 90 findings of previous scavenging studies that demonstrate vertebrate scavengers to rely on 91 carrion more heavily during winter when other food resources are scarce [26-28]. The results 92 are used to highlight the importance of replicating field-based scavenging studies across the 93 seasons in order to fully understand the complex scavenging dynamics and interactions that 94 take place surrounding carrion.

95

96

#### 98 Methods

#### 99 Study site

100 This study was conducted in Kosciuszko National Park, located in southern New South Wales, 101 Australia. This region includes many of the highest peaks and ranges within Australia's Great Dividing Range, including Australia's highest peak – Mount Kosciuszko. The landscape is 102 103 delineated into three altitudinally distinct ecological communities – montane (500m-1500m) 104 subalpine (1500m-1850m), and alpine (1850m-2228m) [43]. This work was undertaken within 105 the montane zone (between approximately 1000m - 1500m) which is characterised by forest 106 stands dominated by snow gum (Eucalyptus pauciflora) in association with various other 107 Eucalyptus species.

#### 108 Ethics, licenses, and permits

The following described work received all required ethics, licenses, and permits approved by the relevant authorities (i.e., The University of Sydney; New South Wales Office of Environment and Heritage; and New South Wales National Parks and Wildlife Services). All kangaroo carcasses used for the purposes of this research were sourced fresh and locally from existing authorised and legally approved management culls that are conducted to control overabundant kangaroo populations.

#### 115 Fieldwork

A 15 km transect was established through Kosciuszko National Park along which all carcass
monitoring took place (Figure 1). This transect ran northeast – southwest from a border region
of the national park inwards towards its interior and was selected due to its accessibility (i.e.,
road access) and because it is a relatively undisturbed area with little human activity.
Monitoring periods were established to coincide with the four seasons: autumn – March 2020;
winter – July 2020; spring – October 2020; summer – January 2021. During each season, 15

sites were established along the transect, separated by approximately 1 km from the nearest sites monitored within the same season and approximately 250m from the nearest sites monitored during other seasons (60 different sites in total; Figure 1). The separation of sites ensured a level of spatial independence and it prevented habituation of scavengers to a carrion source location [35, 44-46].



Figure 1. Location of the monitoring transect along which all 60 carcass sites were established
within Kosciuszko National Park (red = summer, orange = autumn, blue = winter, green =
spring).

Within each seasonal monitoring period, one fresh eastern grey kangaroo carcass was placed
at each site (15 total). The carcasses ranged in weight from 10kg-70kg and on average were
28.3kg (± 1.498 – standard deviation). Each carcass was secured, using wire ties, to star pickets
driven into the ground to ensure they remained in situ to be monitored for 60 days [44-46].
Vertebrate scavenger activity was monitored at each site using a Reconyx PC800 Hyperfire<sup>TM</sup>

remote camera. Each camera was placed on a free-standing star picket three meters north of the carcass – the southern aspect of the cameras decreased exposure to direct sunlight which would otherwise reduce image quality. The cameras were calibrated to take photographs continuously (approximately one image per second) when triggered by thermal movement (i.e., rapid-fire, no wait period). These approaches and methods follow those previously used in field-based scavenging research [21, 34, 35, 44-48].

#### 151 Analyses

152 Remote camera images were analysed for species presence and the number of individuals of a 153 species present. In order to determine distinct visitations of species, an 'event' was 154 characterised as a visitation by a species that occurred more than 10 minutes after the last 155 visitation by that same species. Only species-specific events could be characterised because 156 identification of individuals for most species was not possible. An event was characterised as a 'scavenging event' if the species present scavenged on the monitored carcass in at least one 157 158 of the remote camera images consisting of that event, otherwise the event was characterised as 159 an 'investigation event'. Data from species recorded to have scavenged at least once were 160 included in the statistical analyses.

161 The R software environment (version 1.4.1717) was used for all statistical analyses. Moran's I 162 statistic was utilised to test for spatial autocorrelation in each of the scavenging response 163 variables between the carcass sites (R Package 'ape'; [49]). To determine any differences in 164 species composition between the seasons, a permutational multivariate analysis of variance (PERMANOVA; R Package 'vegan'; [50]) was used in conjunction [51] with an analysis of 165 166 similarities (ANOSIM; R Package 'vegan'; [50]). To determine which scavenger species were 167 driving any differences in species diversity between the seasons a similarity percentages (SIMPER) analysis was used (R Package 'vegan'; [39]). 168

169 To adequately characterise the seasonal nature of scavenging, four response variables were 170 used: scavenger species richness (Conway-Maxwell Poisson distribution), the time to first 171 detection of and scavenging at a carcass (in hours; Gamma distribution), scavenger activity 172 (i.e., probability of a scavenger investigating vs scavenging a carcass; binomial distribution), 173 and investigation and scavenging event duration (in minutes; Gamma distribution). Each of the 174 response variables were modelled against the explanatory variables of season, as well as 175 altitude to account for any differences in elevation, however, given the small altitudinal 176 gradient used (500m) no altitudinal effects were expected. These models were constructed 177 twice, once using only investigation events and once using only scavenging events. Only one 178 model was constructed for scavenger activity as it is a binomial response variable (either 179 investigation; 0, or scavenging; 1) designed specifically to determine the probability of either 180 an investigation event or scavenging event.

181 The relationships of each of these scavenging response variables with the explanatory variables 182 of season and altitude were modelled using either generalised linear models (GLM; R Package 183 'lme4' [52]) or generalised linear mixed models (GLMM; R Package 'lme4' [52]), and in the 184 case of poorly fit models, generalised additive models were utilised (GAM; R Package 'mgcv' 185 [53]). To determine the most parsimonious model(s), Akaike information criterion (AIC) [54] 186 was used ( $\Delta$ AICc level of significance < 2), with model selection facilitated by the utilisation of the dredge function (R Package 'MuMIn' [55]). AIC considers the different combinations 187 188 of explanatory variables (i.e., combinations of season and altitude) within a model and as such 189 the scavenging response variables had four possible models: non-interaction season and 190 altitude model  $(x \sim y + z)$ , season model  $(x \sim y)$ , altitude model  $(x \sim z)$ , and null model  $(x \sim 1)$ . 191 Significance testing (p level of significance < 0.05) was also undertaken using the base model (i.e., non-interaction season and altitude model  $-x \sim y + z$ ) to determine which explanatory 192 193 variables (seasons and/or altitude) and/or their levels (summer, autumn, winter, spring) were

| 194 | important in explaining each of the scavenging response variables. To yield additional        |
|-----|-----------------------------------------------------------------------------------------------|
| 195 | information from these models, Tukey's honest significance tests were used to determine which |
| 196 | seasons were significantly different from one another regarding the modelled scavenging       |
| 197 | response variable (R Package emmeans) [56]. This pair-wise test approach could not be used    |
| 198 | when modelling species richness because it followed a Conway-Maxwell-Poisson distribution     |
| 199 | which does not support post-hoc analyses. However, the previously described PERMANOVA,        |
| 200 | ANOSIM, and SIMPER analyses provided similar relevant insights.                               |
| 201 |                                                                                               |
| 202 |                                                                                               |
| 203 |                                                                                               |
| 204 |                                                                                               |
| 205 |                                                                                               |
| 206 |                                                                                               |
| 207 |                                                                                               |
| 208 |                                                                                               |
| 209 |                                                                                               |

# 211 **Results**

212 Of the 60 carcass sites monitored, remote camera data was gathered for 58; remote camera data 213 for two sites (one during winter and one during summer) were lost due to theft and camera 214 failure. The camera traps took 745,599 images of 34 different species including both scavenger 215 and non-scavenger species. Of these species nine were considered scavenger species based on 216 recorded scavenging of the monitored carcasses (Figure 2). These were the: spotted-tail quoll 217 (Dasyurus maculatus), feral cat (Felis catus), dingo (Canis dingo), pied currawong (Strepera graculina), wedge-tailed eagle (Aquila audax), brushtail possum (Trichosurus vulpecula), 218 219 raven spp. (Corvus coronoides and Corvus mellori – indistinguishable from one another in the 220 remote camera images), red fox (Vulpes vulpes), and feral pig (Sus scrofa).



230 Figure 2. Remote camera images for each of the members of the Australian alpine scavenger

231 guild, determined by recorded scavenging of carcasses in Kosciuszko National Park.

These scavenger species occurred at carcass sites to investigate or scavenge carcasses at varying rates across the seasons (Figure 3). In total 6857 distinct events were recorded of which 2680 were investigation events and 4177 scavenging events (Figure 4.a). Brushtail possums and raven spp. accounted for 88% of the total recorded events, whilst spotted-tail quolls accounted for the fewest events (Figure 4.b).



Figure 3. The total number of carcass sites visited by each scavenger species per season (red = summer, autumn = yellow, winter = blue, spring = green) where carcass sites that were recorded to have been scavenged (solid fill) are distinguished from those that were only investigated (shaded fill).

248

249



Figure 4. (a.) The total number of events (orange = investigation, blue = scavenging) per season and (b.) the percentage of total events attributed to each scavenger species where brushtail possums accounted for 61%, raven spp. 27%, pied currawongs 5%, and all other species < 2% each.

No spatial autocorrelation was detected in any of the scavenging response variables (Table S1). 262 263 The PERMANOVAs demonstrated that there were differences in species composition between 264 the seasons for both investigation events (p = 0.001) and scavenging events (p = 0.004) but that they were weak differences ( $R^2 = 0.146$  and 0.152 respectively; Table S2). The Tukey's honest 265 266 significance tests for the investigation events PERMANOVA demonstrated that species 267 composition was significantly different between autumn and spring (p = 0.030) and between spring and winter (p = 0.018; Table S3). The Tukey's honest significance tests for the 268 269 scavenging events PERMANOVA demonstrated that species composition was significantly 270 different between autumn and winter (p = 0.036) and between spring and winter (p = 0.012; 271 Table S3). Furthermore, in conjunction with the PERMANOVA, the investigation events (R =0.109 with p = 0.001) and scavenging events (R = 0.109 with p = 0.002) ANOSIM analyses 272 suggested that differences in species composition within the seasons and between the seasons 273

was more or less the same (Table S4). The SIMPER analysis demonstrated that brushtail possum and raven spp. were the primary drivers of the observed differences in species composition between the seasons (Figure 5 & Table S5/S6).



Figure 5. The percentage contribution of each scavenger species (contributed most to least, top to bottom of each respective legend) to the differences observed in species composition between each of the seasons for investigation events (top) and scavenging events (bottom). The

296 percentage contribution was adapted from the 'cumulative sum' results yielded from the297 SIMPER analyses (Table S5 and S6).

#### 298 Scavenger species richness for investigation events

All four models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in scavenger species richness for investigation events (Table S7). The base model demonstrated that summer (p = 0.040) and winter (p = 0.035) had a significant effect on scavenger species richness for investigation events (Table S8).

#### 303 Scavenger species richness for scavenging events

Three models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in scavenger species richness for scavenging events (Table S7). The first was the null model ( $\Delta AICc = 0.00$ ), the second the seasons model ( $\Delta AICc = 1.01$ ), and the third the altitude model ( $\Delta AICc = 1.26$ ). The base model was not significant (Table S8).

#### **308** Time to first detection of carcasses

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in time to first detection of carcasses (Table S9). The first was the season model ( $\Delta AICc = 0.00$ ) and the second was the non-interaction season and altitude model ( $\Delta AICc = 1.99$ ). The base model demonstrated that summer had a significant effect on time to first detection of carcasses (p =0.002; Figure 6; Table S10). Specifically, time to first detection of carcasses (in hours) was 4.289 and 6.527 times longer during summer than spring (p = 0.012) and winter (p = 0.0010) respectively (Table S11).

316

317





#### 329 Time to first scavenging of carcasses

Three models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in time to first scavenging of carcasses (Table S9). The first was the season model ( $\Delta AICc = 0.00$ ), the second the null model ( $\Delta AICc = 0.65$ ), and the third the non-interaction season and altitude model ( $\Delta AICc = 1.93$ ). The base model demonstrated that winter had a significant effect on time to first scavenging of carcasses (p = 0.039; Table S10).

#### 335 Scavenger activity

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in scavenger activity (Table S12). The first was the season model ( $\Delta AICc = 0.00$ ) and the second was the non-interaction season and altitude model ( $\Delta AICc = 1.61$ ). The base model demonstrated that winter (p = 0.011) and spring (p = 0.003) had a significant effect on scavenger activity (Figure 4; Table S13). Specifically, scavenging was 2.173 and 3.108 times 341 more likely than investigation during spring than autumn (p = 0.015) and summer (p = < 0.001)

respectively, and 2.787 times more likely during winter than summer (p = < 0.001; Table S14).

#### 343 **Duration of investigation events**

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in the duration of investigation events (Table S15). The first was the null model ( $\Delta AICc = 0.00$ ) and the second was the season model ( $\Delta AICc = 1.89$ ). The base model was not significant (Table S16).

#### 348 Duration of scavenging events

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in the duration of scavenging events (Table S15). The first was the season model ( $\Delta AICc = 0.00$ ) and the second was the non-interaction season and altitude model ( $\Delta AICc = 0.86$ ). The base model demonstrated that spring had a significant effect on the duration of scavenging events (p = <0.001; Figure 7; Table S16). Specifically, scavenging event duration (in minutes) was 1.895 and 1.493 times shorter during spring than autumn (p = < 0.001) and winter (p = 0.041) respectively (Table S17).

356

357

358

359

360

361

362



# 381 **Discussion**

382 This study determined how seasons affected vertebrate scavenging dynamics. It was expected 383 that scavenging dynamics would be highly seasonal, and thus, highlight the importance of 384 seasonal effects, a consideration often absent from the experimental designs of field-based 385 research in scavenging ecology. The findings here demonstrate that scavenging dynamics were 386 highly seasonal, and this trend was consistent (i.e., did not significantly change) across the 387 altitudinal gradient where the carcasses were monitored. Shifts in scavenging dynamics were 388 overwhelmingly dictated by the scavenging rates and activities of mesoscavengers, specifically 389 brushtail possums and raven spp.. The scavenging rates observed by raven spp. were not 390 unusual, with many studies both within Australia and globally describing raven spp. species as 391 prolific scavengers [27, 44, 45, 57, 58]. However, the brushtail possum has received little 392 recognition as a regular scavenger [59-61].

Australia has no true obligate vertebrate scavenger, but our study recorded carcass use by nine species of facultative scavenging vertebrates. Scavenging rates by these species should be highly seasonal, linked to factors such as carrion biomass, availability of other food sources, and/or the life histories of the scavenger species [12-14, 20, 25-28, 62-64]. This was supported by the results, but the trends uncovered were driven by the scavenging behaviours of the brushtail possum and raven spp who together accounted for 88% of all recorded events.

Scavenging dynamics surrounding carrion are not typically dictated by the species-specific scavenging rates of mesoscavengers, but that of larger dominant scavenger species [20, 65-67]. This is because larger species are generally more competitively dominant surrounding carrion [11, 25, 35], and are able to open up carcasses, and thus, provide access to smaller scavengers unable to do so [27, 68, 69]. In this study, however, larger scavengers such as dingoes, wedgetailed eagles, and feral pigs only accounted for 5% of all recorded events, suggesting they were 405 either not abundant during the study period or were not scavenging frequently. At carcass sites 406 they did visit, there was evidence that they could rapidly consume the carcass biomass, 407 including bones; in one case a dingo was observed consuming an entire kangaroo carcass 408 within a 24-hour period. Whether the relative absence of larger scavengers at carcass sites in 409 this study aided mesoscavenger access to the food resource is unknown but could reasonably 410 be expected if this resulted in less competition for the food resource and/or reduced predation 411 risk for the mesoscavengers. The relative absence of dingoes at carcass sites, along with 412 similarly low rates of scavenging by red foxes and feral cats, is likely to have especially 413 influenced the use of carcasses by brushtail possums, as they regularly feature in the diets of 414 these three predators [70-79].

415 The time it takes scavengers to detect a carcass, and subsequently scavenge it, is intrinsically 416 linked with carcass decomposition rates and persistence within the ecosystem [80]. In our 417 study, carcasses took longer to be detected during summer, especially when compared to spring 418 and winter. Carcass detection by scavengers is dependent on a number of factors including 419 olfactory cues, visual cues, inter/intra specific cues, and search effort [36, 42, 81]. We 420 therefore, expected that olfactory cues would be the primary mode of detection given that 421 closed canopy forested ecosystems, such as the montane zone of Kosciuszko National Park, 422 make visual detection and certain forms of inter/intra specific cues difficult [8, 24]. 423 Consequently, it was predicted that during summer greater olfactory cues owing to increased 424 temperatures, and increased invertebrate and microbial scavenging activity, would facilitate 425 shorter time to first detection of carcasses than during the other seasons [3, 5, 24, 82, 83]. 426 However, there was no evidence to support this hypothesis.

427 Instead, it is possible that the same mechanism expected to facilitate shorter time to first 428 detection of carcasses, invertebrate and microbial scavenger activity, in fact, hindered detection 429 of carcasses by the vertebrate scavengers. During summer (warmer months) carcasses are 430 rapidly colonised (within minutes) en masse by invertebrates, and presumably microbes [83-431 88]. The intense scavenging activity that follows accelerates carcass decay through the different 432 stages of decomposition, potentially at such a rate that vertebrate scavengers were given too 433 little time to detect carcasses i.e., the invertebrate scavengers outcompeted vertebrate 434 scavengers [83, 87, 88]. Indeed, previous observations of carcass persistence times in the study 435 site indicated that eastern grey kangaroo carcasses take at least twice as long to reach the dry 436 decay stage (only skin and bones remaining) in cool compared to warmer periods [46]. During 437 the winter monitoring period of this study, some carcasses did not reach the dry decay stage, 438 even after 60 days.

439 Many global studies have demonstrated that vertebrate scavenging rates are lowest during 440 summer when other food sources are more abundant and vice versa during winter [26-28]. In 441 our study, brushtail possums accounted for 81% of all recorded events during winter and they 442 scavenged three times more often during winter than during summer. Generally, the diet of 443 brushtail possums consists of leaves, flowers, fruit, (Eucalyptus and Acacia) and insects [89-444 91], most of which are only seasonally available during warmer months. Therefore, this 445 marsupial may be exhibiting a dependence on carrion during winter that is similar to that of 446 other scavengers in northern hemisphere ecosystems [26-28]. The dependence of the brushtail 447 possum on carrion during winter likely influenced our analyses of the scavenger activity 448 response variable which recorded scavenging to be 2.789 times significantly more likely than 449 investigation of carcasses during winter when compared to summer. This may also explain why 450 carcasses took six times longer to be detected during summer (144 hours - 6 days) than during 451 winter (24 hours), contrary to our prediction that time to first arrival would be shortest in 452 summer. Collectively, during autumn, winter, and spring, 93% of the first detections of a 453 carcass were by either brushtail possums or raven spp. Conversely, during summer, only 57% 454 of the first detections of a carcass were by either brushtail possums or raven spp. Therefore, it is possible that the brushtail possums and raven spp. may have a disproportionately greaterbearing on the time it takes the collective scavenger guild to first detect a carcass.

457 The species-specific breeding seasons of scavengers can also have profound impacts on their 458 respective scavenging behaviours [57, 64, 92, 93]. The Australian raven and little raven breed 459 from late winter into spring [94-96]. Initially, nest construction is prioritised in this early 460 breeding season, and the associated activities are characterised by frequent and short visitations 461 between the nest and sources of nesting material [97]. In our study, numerous remote camera 462 images captured during the spring monitoring period recorded raven spp. collecting hair and/or 463 fur from the carcasses, presumably for nest construction (Figure S1). Following nest 464 construction, chick rearing often requires breeding pairs to divide time between foraging, 465 feeding chicks, and being vigilant and protective of the nest [63]. These considerations often 466 mean that frequent but brief carcass visitations continue into the chick rearing season as the 467 breeding pairs frequently fly back and forth between the nest and food sources [63]. Inherently, 468 during this time both raven spp. incur greater energy costs associated with these activities, and 469 thus, must supplement their diets with protein rich sources and/or greater quantities of food, 470 such as carrion [57, 93]. Of all recorded raven spp. scavenging events during this study, 67% 471 were during spring, and this suggests that raven spp. may heavily rely on carrion to supplement 472 their diet, and that of their chicks, during the breeding season [57]. Further still, this flurry of 473 raven spp. scavenging during spring (a 170% increase on average annual raven spp. scavenging 474 events) accounted for 73% of all scavenging events for the collective scavenger guild. 475 Therefore, given their dominance during spring, it is likely that the frequent but brief 476 scavenging events, characteristic of the raven spp. breeding season, were also deterministic of 477 the significantly shorter scavenging event duration recorded for the collective scavenger guild 478 during spring.

| 479 | The findings here regarding the raven spp. are also indirectly linked to the initial prediction for |
|-----|-----------------------------------------------------------------------------------------------------|
| 480 | longer scavenging event duration during winter - models dictated that scavenging event              |
| 481 | duration during spring was 1.493 times significantly shorter than during winter. Whilst raven       |
| 482 | spp. scavenging behaviours during their breeding seasons (spring) likely determined this result     |
| 483 | and supported our prediction, it is juxtaposed to the initially used supporting evidence. That      |
| 484 | being, many previous studies, mostly undertaken in the northern hemisphere, having                  |
| 485 | demonstrated scavenging rates to increase during winter in response to a lack of other available    |
| 486 | food sources [26-28]. This raises several questions that need be addressed regarding the degree     |
| 487 | to which the Australian alpine winter impacts food sources, species diets, and associated flow-     |
| 488 | on effects to scavenging dynamics vs other alpine areas in the world, and indeed non-alpine         |
| 489 | ecosystems that experience harsher winters.                                                         |
| 490 |                                                                                                     |
| 491 |                                                                                                     |
| 492 |                                                                                                     |
| 493 |                                                                                                     |
| 494 |                                                                                                     |
| 495 |                                                                                                     |
| 496 |                                                                                                     |
| 497 |                                                                                                     |
| 498 |                                                                                                     |

### 499 **Conclusion**

Scavenging dynamics in this study were highly seasonal, but dictated by the scavenging 500 501 activities and behaviours of mesoscavengers – the brushtail possum and raven spp.. The high 502 rate of scavenging by these species drove the seasonal trends in scavenging dynamics, but the 503 direction in which the seasonal effects impacted the scavenging response variables was not 504 always as predicted. This exemplifies the unexpected influence that seasons can have on 505 ecological processes linked to scavenging and highlights the need for seasonally replicated 506 experimental approaches in field-based scavenging research; the primary motivation for 507 undertaking this study.

The high rates of scavenging by the brushtail possum suggest that the species dietary status be reconsidered, and with regards to the raven spp. a potential avenue for future work could be to investigate the impact of carrion availability on breeding success. These findings, and indeed such recommended future research (discussed in further detail in *Chapter 4 – Conclusion and future directions*), have the potential to be of continental relevance given that the brushtail possum is the most widespread Australian marsupial and that both raven spp. are also relatively abundant across southern-east Australia [98].

515 In recent decades increased recognition of the ecosystem sustaining processes that scavengers 516 provide have advanced our understanding of scavenging dynamics, a previously misunderstood 517 and underappreciated area of ecology [7, 99]. In order to ensure that such scientific advances 518 are maintained, seasonal effects need to be accounted for in the field of scavenging ecology. 519 Not only are the findings of this study ecologically relevant to scavenging ecology within 520 Australia, but also serve as a more practical example of a robust and repeatable method for 521 monitoring and assessing scavenging dynamics surrounding carrion within any given 522 ecosystem.

# 523 **References**

- 524 1. Barton, P.S., et al., *The role of carrion in maintaining biodiversity and ecological*
- 525 processes in terrestrial ecosystems. Oecologia, 2013. 171(4): p. 761-772.
- 526 2. Wilson, E.E. and E.M. Wolkovich, *Scavenging: how carnivores and carrion structure*
- 527 *communities.* Trends in Ecology & Evolution, 2011. **26**(3): p. 129-135.
- 528 3. Carter, D.O., D. Yellowlees, and M. Tibbett, *Cadaver decomposition in terrestrial*529 *ecosystems*. Naturwissenschaften, 2007. 94(1): p. 12-24.
- 530 4. DeVault, T.L., J. Rhodes, Olin E, and J.A. Shivik, *Scavenging by vertebrates:*
- 531 *behavioral, ecological, and evolutionary perspectives on an important energy transfer*
- 532 pathway in terrestrial ecosystems. Oikos, 2003. 102(2): p. 225-234.
- 533 5. Forbes, S.L. and D.O. Carter, *Processes and mechanisms of death and decomposition*534 *of vertebrate carrion.* Carrion ecology, evolution, and their applications. CRC Press,
- 535 Boca Raton, 2015. **512**.
- 536 6. Grilli, M.G., K.L. Bildstein, and S.A. Lambertucci, *Nature's clean-up crew:*
- 537 *Quantifying ecosystem services offered by a migratory avian scavenger on a*
- 538 *continental scale*. Ecosystem Services, 2019. **39**: p. 100990.
- 539 7. Beasley, J.C., et al., *Ecological functions of vertebrate scavenging*, in *Carrion*540 *ecology and management*. 2019, Springer. p. 125-157.
- Moleón, M., et al., *Carrion availability in space and time*, in *Carrion ecology and management*. 2019, Springer. p. 23-44.
- 543 9. Boyce, M.S., *Seasonality and patterns of natural selection for life histories*. The
  544 American Naturalist, 1979. 114(4): p. 569-583.
- 545 10. Skellam, J. Seasonal periodicity in theoretical population ecology. in Proceedings of
- 546 *the Fifth Berkeley Symposium on Mathematical Statistics and Probability.* 1967.
- 547 University of California Press Berkeley and Los Angeles.

- 548 11. Moleón, M., et al., *Inter-specific interactions linking predation and scavenging in*549 *terrestrial vertebrate assemblages*. Biological Reviews, 2014. 89(4): p. 1042-1054.
- Jones, S.C., E.D. Strauss, and K.E. Holekamp, *Ecology of African carrion*. Carrion
  ecology, evolution, and their applications, 2015: p. 461-491.
- 552 13. Dudley, J.P., et al., *Drought mortality of bush elephants in Hwange National Park*,
- 553 *Zimbabwe*. African Journal of Ecology, 2001. **39**(2): p. 187-194.
- Knight, M., Drought-related mortality of wildlife in the southern Kalahari and the *role of man.* African Journal of Ecology, 1995. 33(4): p. 377-394.
- 556 15. Hopcraft, J.G.C., et al., 6. Why Are Wildebeest the Most Abundant Herbivore in the
- 557 Serengeti Ecosystem?, in Serengeti IV. 2015, University of Chicago Press. p. 125-174.
- 558 16. Subalusky, A.L., et al., Annual mass drownings of the Serengeti wildebeest migration
- *influence nutrient cycling and storage in the Mara River*. Proceedings of the National
  Academy of Sciences, 2017. 114(29): p. 7647-7652.
- 561 17. Subalusky, A.L., et al., *A river of bones: Wildebeest skeletons leave a legacy of mass*562 *mortality in the Mara River, Kenya.* Frontiers in Ecology and Evolution, 2020. 8: p.
- 563 31.
- Handler, K.S., et al., *Temporal resource partitioning of wildebeest carcasses by scavengers after riverine mass mortality events*. Ecosphere, 2021. 12(1): p. e03326.
- 566 19. Clutton-Brock, T., et al., *Stability and instability in ungulate populations: an*567 *empirical analysis.* The American Naturalist, 1997. 149(2): p. 195-219.
- 568 20. Wilmers, C.C., et al., *Trophic facilitation by introduced top predators: grey wolf*
- 569 subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology,
- 570 2003. **72**(6): p. 909-916.

- 571 21. Flint, P.L., et al., Estimating carcass persistence and scavenging bias in a human-572 influenced landscape in western Alaska. Journal of Field Ornithology, 2010. 81(2): p. 573 206-214.
- 574 22. Matuszewski, S., et al., Insect succession and carrion decomposition in selected 575 forests of Central Europe. Part 1: Pattern and rate of decomposition. Forensic
- 576 science international, 2010. 194(1-3): p. 85-93.
- 577 23. Turner, K.L., et al., Abiotic and biotic factors modulate carrion fate and vertebrate 578 scavenging communities. Ecology, 2017. 98(9): p. 2413-2424.
- 579 24. Barton, P.S. and J.K. Bump, Carrion decomposition, in Carrion ecology and 580 management. 2019, Springer. p. 101-124.
- 581 25. Pereira, L.M., N. Owen-Smith, and M. Moleón, Facultative predation and scavenging
- 582 by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mammal 583 Review, 2014. 44(1): p. 44-55.
- 584 26. Selva, N., et al., Factors affecting carcass use by a guild of scavengers in European
- 585 temperate woodland. Canadian Journal of Zoology, 2005. 83(12): p. 1590-1601.
- 586 27. Selva, N., et al., Scavenging on European bison carcasses in Bialowieza primeval

587 forest (eastern Poland). Ecoscience, 2003. 10(3): p. 303-311.

- Jedrzejewska, B. and W. Jedrzejewski, Predation in vertebrate communities: the 588 28. 589 Bialowieza Primeval Forest as a case study. Vol. 135. 1998: Springer Science & Business Media.
- 591 29. Sotillo, A., et al., Consumption of discards by Herring Gulls Larus argentatus and
- Lesser Black-backed Gulls Larus fuscus off the Belgian coast in the breeding season. 592
- 593 Ardea, 2014. 102(2): p. 195-206.

- 594 30. Rahmstorf, S. and D. Coumou, Increase of extreme events in a warming world.
- 595 Proceedings of the National Academy of Sciences, 2011. 108(44): p. 17905-17909.

- Schoenly, K.G., J. Michaud, and G. Moreau, *Design and analysis of field studies in carrion ecology*. Carrion ecology, evolution, and their applications. CRC Press, Boca
  Raton, 2015: p. 129-148.
- 599 32. Forsyth, D.M., et al., How does a carnivore guild utilise a substantial but
- 600 *unpredictable anthropogenic food source? Scavenging on hunter-shot ungulate*
- 601 *carcasses by wild dogs/dingoes, red foxes and feral cats in south-eastern Australia*
- 602 *revealed by camera traps.* PLoS One, 2014. **9**(6): p. e97937.
- Read, J. and D. Wilson, *Scavengers and detritivores of kangaroo harvest offcuts in arid Australia.* Wildlife Research, 2004. **31**(1): p. 51-56.
- Rød-Eriksen, L., et al., *Highways associated with expansion of boreal scavengers into the alpine tundra of Fennoscandia*. Journal of Applied Ecology, 2020. 57(9): p. 18611870.
- 60835.Inagaki, A., et al., Vertebrate scavenger guild composition and utilization of carrier
- 609 *in an East Asian temperate forest.* Ecology and evolution, 2020. **10**(3): p. 1223-1232.
- 610 36. López-López, P., et al., Scavengers on the move: behavioural changes in foraging
- 611 *search patterns during the annual cycle.* PloS one, 2013. **8**(1): p. e54352.
- 612 37. Peisley, R.K., et al., *The role of avian scavengers in the breakdown of carcasses in*613 *pastoral landscapes*. Emu-Austral Ornithology, 2017. **117**(1): p. 68-77.
- 614 38. Rees, J.D., et al., *Direct and indirect effects of carrion subsidies in an arid rangeland:*
- 615 *Carrion has positive effects on facultative scavengers and negative effects on a small*
- 616 songbird. Journal of Arid Environments, 2020. **179**: p. 104174.
- 617 39. Bingham, E.L., et al., Functional plasticity in vertebrate scavenger assemblages in
- 618 *the presence of introduced competitors*. Oecologia, 2018. **188**(2): p. 583-593.

- 619 40. Cunningham, C.X., et al., *Top carnivore decline has cascading effects on scavengers*620 *and carrion persistence*. Proceedings of the Royal Society B, 2018. 285(1892): p.
  621 20181582.
- Fielding, M.W., et al., *Dominant carnivore loss benefits native avian and invasive mammalian scavengers.* bioRxiv, 2021.
- 624 42. Cammack, J., et al., *Chemical ecology of vertebrate carrion*. Carrion Ecology,
  625 Evolution, and Their Applications; Benbow, ME, Tomberlin, JK, Tarone, AM, Eds,
- 626 2015: p. 187-212.
- 43. Bear, R., W. Hill, and C.M. Pickering, *Distribution and diversity of exotic plant species in montane to alpine areas of Kosciuszko National Park*. Cunninghamia,
  2006. 9(4): p. 559-570.
- 630 44. Newsome, T.M. and E.E. Spencer, *Megafires attract avian scavenging but carcasses*631 *still persist.* Diversity and Distributions, 2021.
- 45. Spencer, E.E., et al., *Carcasses attract invasive species and increase artificial nest predation in a desert environment.* Global Ecology and Conservation, 2021. 27: p.
  e01588.
- 635 46. Spencer, E. and T. Newsome, *Dingoes dining with death*. Australian Zoologist, 2021.
- King, N.J., P.M. Bagley, and I.G. Priede, *Depth zonation and latitudinal distribution of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42 to 53 N.* Marine
  Ecology Progress Series, 2006. 319: p. 263-274.
- 639 48. Kostecke, R., G. Linz, and W. Bleier, Survival Of Avian Carcasses And Photographic
- *Evidence Of Predators And Scavengers.* Journal of Field Ornithology, 2001. 72(3): p.
  439-447.
- 49. Paradis, E. and K. Schliep, *ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.* Bioinformatics, 2019. 35(3): p. 526-528.

- 644 50. Oksanen, J., et al., *The vegan package*. Community ecology package, 2007. 10(631645 637): p. 719.
- 646 51. Somerfield, P.J., K.R. Clarke, and R.N. Gorley, *Analysis of similarities (ANOSIM) for*
- 647 2-way layouts using a generalised ANOSIM statistic, with comparative notes on
- 648 *Permutational Multivariate Analysis of Variance (PERMANOVA).* Austral Ecology,
- 649 2021. **46**(6): p. 911-926.
- 650 52. Bates, D., et al., *Fitting linear mixed-effects models using lme4*. arXiv preprint
  651 arXiv:1406.5823, 2014.
- 53. Wood, S. and M.S. Wood, *Package 'mgcv'*. R package version, 2015. 1: p. 29.
- 653 54. Sakamoto, Y., M. Ishiguro, and G. Kitagawa, *Akaike information criterion statistics*.
- 654 Dordrecht, The Netherlands: D. Reidel, 1986. **81**(10.5555): p. 26853.
- 655 55. Bates, D., et al., *Package 'lme4'*. Version, 2018. 1(17): p. 437.
- 656 56. Lenth, R. and M.R. Lenth, *Package 'Ismeans'*. The American Statistician, 2018.
  657 **34**(4): p. 216-221.
- 658 57. O'Brien, R.C., et al., *The scavenging behaviour of the Australian Raven (Corvus*659 *coronoides): patterns and influencing factors.* 2010.
- 660 58. Bragato, P.J., et al., *Effects of habitat, season and flood on corvid scavenging*661 *dynamics in Central Australia.* Austral Ecology, 2022.
- 662 59. Heinsohn, T. and R. Barker, *Observations of scavenging carnivory by the common*
- 663 brushtail possum Trichosurus vulpecula on macropod carcasses in Namadgi national
- 664 *park, montane southeastern australia.* Australian Zoologist, 2006. **33**(3): p. 295-305.
- 665 60. O'Brien, R.C., et al., Forensically significant scavenging guilds in the southwest of
- 666 *Western Australia*. Forensic Science International, 2010. **198**(1-3): p. 85-91.
- 667 61. Brown, K., J. Innes, and R. Shorten, *Evidence that possums prey on and scavenge*
- 668 *birds' eggs, birds and mammals.* Notornis, 1993. **40**(3): p. 169-177.

- 669 62. Selva, N. and M.A. Fortuna, *The nested structure of a scavenger community*.
- 670 Proceedings of the Royal Society B: Biological Sciences, 2007. 274(1613): p. 1101671 1108.
- 672 63. Wilmers, C.C. and W.M. Getz, *Simulating the effects of wolf-elk population dynamics*673 *on resource flow to scavengers*. Ecological Modelling, 2004. 177(1-2): p. 193-208.
- 674 64. White, T.C., *The significance of unripe seeds and animal tissues in the protein*

675 *nutrition of herbivores*. Biological Reviews, 2011. **86**(1): p. 217-224.

- 676 65. Wilmers, C.C. and E. Post, *Predicting the influence of wolf-provided carrion on*
- 677 scavenger community dynamics under climate change scenarios. Global Change
  678 Biology, 2006. 12(2): p. 403-409.
- 679 66. Allen, M.L., et al., *Trophic facilitation or limitation? Comparative effects of pumas*680 *and black bears on the scavenger community.* PLoS One, 2014. 9(7): p. e102257.
- 681 67. Krofel, M., I. Kos, and K. Jerina, *The noble cats and the big bad scavengers: effects*
- 682 *of dominant scavengers on solitary predators.* Behavioral Ecology and Sociobiology,
  683 2012. 66(9): p. 1297-1304.
- 684 68. Selva, N., et al., *Vertebrate scavenging communities*, in *Carrion Ecology and*685 *Management*. 2019, Springer. p. 71-99.
- 686 69. Moleón, M., et al., *Carcass size shapes the structure and functioning of an African*687 scavenging assemblage. Oikos, 2015. **124**(10): p. 1391-1403.
- 688 70. Brook, L. and A. Kutt, *The diet of the dingo (Canis lupus dingo) in north-eastern*
- 689 *Australia with comments on its conservation implications.* The Rangeland Journal,
- 690 2011. **33**(1): p. 79-85.
- 691 71. Newsome, A., et al., *The feeding ecology of the dingo. 1. Stomach contents from*
- 692 trapping in south-eastern Australia, and the non-target wildlife also caught in dingo
- 693 *traps.* Wildlife Research, 1983. **10**(3): p. 477-486.

- 694 72. Pascoe, J.H., et al., *Diet analysis of mammals, raptors and reptiles in a complex*
- 695 predator assemblage in the Blue Mountains, eastern Australia. Australian Journal of
  696 Zoology, 2012. 59(5): p. 295-301.
- 697 73. Vernes, K., A. Dennis, and J. Winter, *Mammalian Diet and Broad Hunting Strategy*698 of the Dingo (Canis familiaris dingo) in the Wet Tropical Rain Forests of
- 699 *Northeastern Australia 1.* Biotropica, 2001. **33**(2): p. 339-345.
- 700 74. Fleming, P.A., et al., *Diet of the introduced red fox Vulpes vulpes in Australia:*
- 701 *analysis of temporal and spatial patterns*. Mammal Review, 2021. **51**(4): p. 508-527.
- 702 75. Kinnear, J., N. Sumner, and M. Onus, *The red fox in Australia—an exotic predator*

703 *turned biocontrol agent.* Biological Conservation, 2002. **108**(3): p. 335-359.

- 704 76. McComb, L.B., et al., *Feral cat predation on Leadbeater's possum (Gymnobelideus*
- 705 *leadbeateri) and observations of arboreal hunting at nest boxes.* Australian
- 706 Mammalogy, 2018. **41**(2): p. 262-265.
- 707 77. Dickman, C.R., Overview of the impacts of feral cats on Australian native fauna.
- 708 1996: Australian Nature Conservation Agency Canberra.
- 709 78. Jones, E. and B.J. Coman, *Ecology of the feral cat, Felis catus (L.), in south-eastern*
- 710 *Australia I. Diet.* Wildlife Research, 1981. **8**(3): p. 537-547.
- 711 79. Moseby, K., et al., *The ecological costs and benefits of a feral cat poison-baiting*
- 712 programme for protection of reintroduced populations of the western quoll and
- 713 *brushtail possum*. Austral Ecology, 2021. **46**(8): p. 1366-1382.
- 80. Santos, R.A.L., et al., *Carcass persistence and detectability: reducing the uncertainty*
- 715 *surrounding wildlife-vehicle collision surveys.* PloS one, 2016. **11**(11): p. e0165608.
- 716 81. Cortés-Avizanda, A., et al., Bird sky networks: How do avian scavengers use social
- 717 *information to find carrion?* Ecology, 2014. **95**(7): p. 1799-1808.

- 718 82. Mann, R.W., W.M. Bass, and L. Meadows, Time since death and decomposition of 719 the human body: variables and observations in case and experimental field studies. Journal of Forensic Science, 1990. 35(1): p. 103-111. 720 721 83. Barton, P.S. and M.J. Evans, Insect biodiversity meets ecosystem function: differential 722 effects of habitat and insects on carrion decomposition. Ecological Entomology, 723 2017. **42**(3): p. 364-374. 724 84. Anderson, G.S., et al., Invertebrate scavenging communities, in Carrion Ecology and 725 Management. 2019, Springer. p. 45-69. 726 85. Crippen, T.L., M.E. Benbow, and J.L. Pechal, Microbial interactions during carrier 727 decomposition. Carrion ecology, evolution, and their applications, 2015: p. 31-64. 728 86. Merritt, R.W., et al., Arthropod communities in terrestrial environments. Carrion 729 ecology, evolution, and their applications. CRC Press, Boca Raton, FL, 2015: p. 65-92. 730 731 Ray, R.-R., H. Seibold, and M. Heurich, Invertebrates outcompete vertebrate 87.
  - facultative scavengers in simulated lynx kills in the Bavarian Forest National Park,
  - 733 *Germany*. Animal Biodiversity and Conservation, 2014. **37**(1): p. 77-88.
  - 88. Evans, M.J., J.F. Wallman, and P.S. Barton, *Traits reveal ecological strategies*
  - *driving carrion insect community assembly*. Ecological Entomology, 2020. 45(5): p.
    966-977.
  - 89. How, R. and S. Hillcox, Brushtail possum, Trichosurus vulpecula, populations in
    south-western Australia: demography, diet and conservation status. Wildlife
  - 739 Research, 2000. **27**(1): p. 81-89.
  - 740 90. Evans, M., Diet of the Brushtail Possum Trichosurus vulpecula (Marsupialia:
  - 741 *Phalangeridae) in central Australia.* Australian Mammalogy, 1992. **15**(1): p. 25-30.

- Wiggins, N.L., et al., *Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum.* Journal of chemical
  ecology, 2003. 29(6): p. 1447-1464.
- 745 92. Coppola, F., et al., *Evidence of scavenging behaviour in crested porcupine*. Scientific
  746 Reports, 2020. 10(1): p. 1-6.
- 747 93. Camphuysen, C., *Herring Gull Larus argentatus and Lesser Black-backed Gull L.*
- fuscus feeding at fishing vessels in the breeding season: competitive scavenging
  versus efficient flying. ARDEA-WAGENINGEN-, 1995. 83: p. 365-380.
- 750 94. Moon, D.L., *A study of the abundance, distribution and daily activities of the*

751 *Australian Raven (Corvus coronoides) in urban wetland parks.* 2005.

- 752 95. Ekanayake, K.B., et al., Urban corvids on the move: habitat use and movement
- *ecology of the Little Raven Corvus mellori at a peri-urban wetland*. Corella, 2018. 42:
  p. 29-37.
- 755 96. Whisson, D.A., M.A. Weston, and K. Shannon, *Home range, habitat use and*
- 756 movements by the little raven (Corvus mellori) in a coastal peri-urban landscape.
- 757 Wildlife Research, 2015. **42**(6): p. 500-508.
- Moreno-Opo, R. and A. Margalida, *Carcasses provide resources not exclusively to scavengers: patterns of carrion exploitation by passerine birds*. Ecosphere, 2013.
- 760 **4**(8): p. 1-15.
- 761 98. Correll, R.A., T.A. Prowse, and G.J. Prideaux, *Lean-season primary productivity and*762 *heat dissipation as key drivers of geographic body-size variation in a widespread*763 *marsupial.* Ecography, 2016. **39**(1): p. 77-86.
- 764 99. DeVault, T.L., et al., *Ecosystem services provided by avian scavengers*, in *Why Birds*765 *Matter*. 2016, University of Chicago Press. p. 235-270.

# **Chapter 2 – Supplementary Material**



**Figure 1.** A raven spp. (*Corvus coronoides* or *Corvus mellori*) breeding pair collecting hair/fur from a kangaroo carcass during the spring monitoring period, presumably for nest construction.
Table 1. Moran's I measure of spatial independence for the various scavenging response variables.

| Observed  | Expected        | SD         | р      |
|-----------|-----------------|------------|--------|
| Species R | ichness Inves   | tigation E | Events |
| 0.006     | -0.018          | 0.033      | 0.473  |
| Species R | Cichness Scav   | enging E   | vents  |
| -0.026    | -0.018          | 0.034      | 0.808  |
| Tiı       | ne to First De  | etection   |        |
| -0.021    | -0.018          | 0.032      | 0.918  |
| Tim       | ne to First Sca | wenging    |        |
| 0.005     | -0.018          | 0.033      | 0.490  |
| Tot       | al Investigati  | on Time    |        |
| 0.009     | -0.018          | 0.033      | 0.417  |
| Aver      | age Investiga   | tion Time  | e      |
| -0.012    | -0.018          | 0.034      | 0.870  |
| То        | tal Scavengin   | ig Time    |        |
| -0.064    | -0.018          | 0.032      | 0.150  |
| Ave       | rage Scaveng    | ing Time   |        |
| -0.040    | -0.018          | 0.033      | 0.503  |

**Table 2.** The permutational multivariate analysis of variance (PERMANOVA) for investigation events species composition (top) and scavenging events species composition (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

|           | Df | Sums of sqs | Mean sqs       | F Model | R <sup>2</sup> | р     |
|-----------|----|-------------|----------------|---------|----------------|-------|
|           |    | Invest      | igation Events |         |                |       |
| Seasons   | 3  | 0.931       | 0.310          | 2.898   | 0.139          | 0.002 |
| Residuals | 54 | 5.779       | 0.107          |         | 0.861          |       |
| Total     | 57 | 6.710       |                |         | 1.000          |       |
|           |    | Scave       | enging Events  |         |                |       |
| Seasons   | 3  | 1.488       | 0.496          | 2.991   | 0.152          | 0.004 |
| Residuals | 50 | 8.289       | 0.166          |         | 0.848          |       |
| Total     | 53 | 9.776       |                |         | 1.000          |       |

**Table 3.** Tukey's honest significance tests between each of the seasons for the permutational multivariate analysis of variance (PERMANOVA) for investigation events species composition (top) and scavenging events species composition (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

| Contrast             | F Model  | R <sup>2</sup> | р     | p adjusted |  |  |  |
|----------------------|----------|----------------|-------|------------|--|--|--|
| Investigation Events |          |                |       |            |  |  |  |
| Autumn - Spring      | 4.554    | 0.140          | 0.005 | 0.030      |  |  |  |
| Autumn - Summer      | 1.984    | 0.068          | 0.119 | 0.714      |  |  |  |
| Autumn - Winter      | 1.658    | 0.058          | 0.169 | 1.000      |  |  |  |
| Spring - Summer      | 1.147    | 0.041          | 0.358 | 1.000      |  |  |  |
| Spring - Winter      | 4.995    | 0.156          | 0.003 | 0.018      |  |  |  |
| Summer - Winter      | 3.436    | 0.117          | 0.015 | 0.090      |  |  |  |
|                      | Scavengi | ng Events      |       |            |  |  |  |
| Autumn - Spring      | 3.252    | 0.115          | 0.009 | 0.054      |  |  |  |
| Autumn - Summer      | 1.464    | 0.060          | 0.212 | 1.000      |  |  |  |
| Autumn - Winter      | 3.857    | 0.138          | 0.006 | 0.036      |  |  |  |
| Spring - Summer      | 2.974    | 0.103          | 0.030 | 0.180      |  |  |  |
| Spring - Winter      | 5.500    | 0.169          | 0.002 | 0.012      |  |  |  |
| Summer - Winter      | 1.797    | 0.067          | 0.152 | 0.912      |  |  |  |

**Table 4.** The analysis of similarities (ANOSIM) for investigation events species composition(top) and scavenging events species composition (bottom). Significant p-values (p < 0.05) aredenoted in bold.

| Significance |
|--------------|
| Events       |
| 0.001        |
| vents        |
| 0.002        |
|              |

**Table 5.** The similarity percentages (SIMPER) analysis demonstrating the contribution of each

 species to explaining differences between the seasons in investigation event species

 composition.

|                    | Average | SD     | Ratio    | AVA    | AVB    | CUMSUM |  |
|--------------------|---------|--------|----------|--------|--------|--------|--|
| Summer vs Autumn   |         |        |          |        |        |        |  |
| Brushtail possum   | 0.433   | 0.244  | 1.772    | 47.214 | 27.067 | 0.705  |  |
| Raven spp.         | 0.039   | 0.046  | 0.849    | 1.500  | 2.333  | 0.769  |  |
| Feral cat          | 0.031   | 0.074  | 0.420    | 0.357  | 1.933  | 0.819  |  |
| Dingo              | 0.030   | 0.046  | 0.644    | 1.571  | 0.667  | 0.868  |  |
| Feral pig          | 0.022   | 0.043  | 0.511    | 0.214  | 1.200  | 0.904  |  |
| Pied currawong     | 0.022   | 0.035  | 0.606    | 0.786  | 1.000  | 0.939  |  |
| Wedge-tailed eagle | 0.018   | 0.034  | 0.538    | 0.429  | 0.800  | 0.969  |  |
| Red fox            | 0.017   | 0.033  | 0.504    | 0.000  | 1.400  | 0.996  |  |
| Spotted-tail quoll | 0.002   | 0.007  | 0.336    | 0.000  | 0.133  | 1.000  |  |
|                    |         | Summer | vs Winte | er     |        |        |  |
| Brushtail possum   | 0.436   | 0.247  | 1.765    | 47.214 | 44.929 | 0.781  |  |
| Raven spp.         | 0.039   | 0.054  | 0.721    | 1.500  | 2.857  | 0.850  |  |
| Pied currawong     | 0.026   | 0.042  | 0.626    | 0.786  | 1.786  | 0.897  |  |
| Dingo              | 0.021   | 0.033  | 0.651    | 1.571  | 0.071  | 0.936  |  |
| Red fox            | 0.012   | 0.020  | 0.593    | 0.000  | 0.857  | 0.957  |  |
| Wedge-tailed eagle | 0.008   | 0.023  | 0.338    | 0.429  | 0.214  | 0.971  |  |
| Feral cat          | 0.007   | 0.011  | 0.651    | 0.357  | 0.429  | 0.984  |  |
| Feral pig          | 0.006   | 0.011  | 0.541    | 0.214  | 0.357  | 0.995  |  |
| Spotted-tail quoll | 0.003   | 0.010  | 0.305    | 0.000  | 0.286  | 1.000  |  |

| Summer vs Spring   |       |        |           |        |        |       |
|--------------------|-------|--------|-----------|--------|--------|-------|
| Brushtail possum   | 0.375 | 0.223  | 1.683     | 47.214 | 23.600 | 0.586 |
| Raven spp.         | 0.126 | 0.169  | 0.743     | 1.500  | 13.200 | 0.783 |
| Pied currawong     | 0.089 | 0.146  | 0.607     | 0.786  | 6.200  | 0.921 |
| Dingo              | 0.034 | 0.045  | 0.764     | 1.571  | 1.800  | 0.974 |
| Wedge-tailed eagle | 0.006 | 0.022  | 0.269     | 0.429  | 0.000  | 0.984 |
| Feral cat          | 0.005 | 0.008  | 0.685     | 0.357  | 0.267  | 0.992 |
| Feral pig          | 0.005 | 0.011  | 0.417     | 0.214  | 0.067  | 0.999 |
| Red fox            | 0.001 | 0.003  | 0.248     | 0.000  | 0.067  | 1.000 |
| Spotted-tail quoll | 0.000 | 0.000  | 0.000     | 0.000  | 0.000  | 1.000 |
|                    |       | Autumn | vs Winte  | r      |        |       |
| Brushtail possum   | 0.347 | 0.223  | 1.559     | 27.067 | 44.929 | 0.682 |
| Raven spp.         | 0.047 | 0.055  | 0.865     | 2.333  | 2.857  | 0.775 |
| Pied currawong     | 0.027 | 0.041  | 0.646     | 1.000  | 1.786  | 0.827 |
| Feral cat          | 0.026 | 0.058  | 0.454     | 1.933  | 0.429  | 0.879 |
| Red fox            | 0.021 | 0.027  | 0.794     | 1.400  | 0.857  | 0.921 |
| Feral pig          | 0.017 | 0.031  | 0.549     | 1.200  | 0.357  | 0.954 |
| Wedge-tailed eagle | 0.011 | 0.019  | 0.607     | 0.800  | 0.214  | 0.976 |
| Dingo              | 0.007 | 0.014  | 0.528     | 0.667  | 0.071  | 0.991 |
| Spotted-tail quoll | 0.005 | 0.010  | 0.457     | 0.133  | 0.286  | 1.000 |
|                    |       | Autumn | vs Spring | g      |        |       |
| Brushtail possum   | 0.250 | 0.174  | 1.442     | 27.067 | 23.600 | 0.430 |
| Raven spp.         | 0.138 | 0.167  | 0.826     | 2.333  | 13.200 | 0.667 |
| Pied currawong     | 0.094 | 0.146  | 0.641     | 1.000  | 6.200  | 0.827 |
| Dingo              | 0.030 | 0.047  | 0.647     | 0.667  | 1.800  | 0.879 |

| Feral cat          | 0.026 | 0.060    | 0.436    | 1.933  | 0.267  | 0.924 |
|--------------------|-------|----------|----------|--------|--------|-------|
| Feral pig          | 0.017 | 0.031    | 0.548    | 1.200  | 0.067  | 0.953 |
| Red fox            | 0.015 | 0.028    | 0.552    | 1.400  | 0.067  | 0.979 |
| Wedge-tailed eagle | 0.010 | 0.018    | 0.568    | 0.800  | 0.000  | 0.997 |
| Spotted-tail quoll | 0.002 | 0.005    | 0.377    | 0.133  | 0.000  | 1.000 |
|                    |       | Winter v | s Spring |        |        |       |
| Brushtail possum   | 0.272 | 0.192    | 1.419    | 44.929 | 23.600 | 0.524 |
| Raven spp.         | 0.119 | 0.142    | 0.840    | 2.857  | 13.200 | 0.754 |
| Pied currawong     | 0.080 | 0.115    | 0.689    | 1.786  | 6.200  | 0.908 |
| Dingo              | 0.023 | 0.039    | 0.583    | 0.071  | 1.800  | 0.952 |
| Red fox            | 0.011 | 0.016    | 0.668    | 0.857  | 0.067  | 0.973 |
| Feral cat          | 0.006 | 0.009    | 0.689    | 0.429  | 0.267  | 0.984 |
| Feral pig          | 0.004 | 0.005    | 0.659    | 0.357  | 0.067  | 0.991 |
| Spotted-tail quoll | 0.003 | 0.008    | 0.326    | 0.286  | 0.000  | 0.996 |
| Wedge-tailed eagle | 0.002 | 0.008    | 0.273    | 0.214  | 0.000  | 1.000 |

|                    | Average | SD     | Ratio     | AVA    | AVB    | CUMSUM |
|--------------------|---------|--------|-----------|--------|--------|--------|
| Summer vs Autumn   |         |        |           |        |        |        |
| Brushtail possum   | 0.355   | 0.293  | 1.214     | 30.615 | 25.500 | 0.474  |
| Raven spp.         | 0.238   | 0.211  | 1.129     | 5.154  | 20.083 | 0.793  |
| Feral pig          | 0.084   | 0.137  | 0.610     | 1.846  | 4.000  | 0.904  |
| Wedge-tailed eagle | 0.039   | 0.086  | 0.454     | 0.769  | 1.750  | 0.956  |
| Red fox            | 0.017   | 0.025  | 0.702     | 0.000  | 1.167  | 0.980  |
| Dingo              | 0.010   | 0.025  | 0.388     | 0.385  | 0.333  | 0.992  |
| Pied currawong     | 0.006   | 0.022  | 0.261     | 0.231  | 0.000  | 1.000  |
| Feral cat          | 0.000   | 0.000  | 0.000     | 0.000  | 0.000  | 1.000  |
| Spotted-tail quoll | 0.000   | 0.000  | 0.000     | 0.000  | 0.000  | 1.000  |
|                    |         | Summer | vs Winte  | r      |        |        |
| Brushtail possum   | 0.496   | 0.290  | 1.711     | 30.615 | 86.357 | 0.694  |
| Raven spp.         | 0.135   | 0.154  | 0.874     | 5.154  | 14.214 | 0.883  |
| Feral pig          | 0.030   | 0.072  | 0.408     | 1.846  | 0.714  | 0.924  |
| Wedge-tailed eagle | 0.026   | 0.071  | 0.362     | 0.769  | 4.429  | 0.960  |
| Pied currawong     | 0.017   | 0.050  | 0.345     | 0.231  | 4.000  | 0.985  |
| Dingo              | 0.004   | 0.014  | 0.311     | 0.385  | 0.000  | 0.991  |
| Red fox            | 0.003   | 0.009  | 0.293     | 0.000  | 0.214  | 0.995  |
| Spotted-tail quoll | 0.002   | 0.009  | 0.292     | 0.000  | 0.286  | 0.998  |
| Feral cat          | 0.001   | 0.006  | 0.253     | 0.000  | 0.071  | 1.000  |
|                    |         | Summer | vs Spring | 5      |        |        |

**Table 6.** The similarity percentages (SIMPER) analysis demonstrating the contribution of each

 species to explaining differences between the seasons in scavenging event species composition.

| Raven spp.         | 0.410 | 0.310  | 1.322     | 5.154    | 71.000 | 0.500 |
|--------------------|-------|--------|-----------|----------|--------|-------|
| Brushtail possum   | 0.252 | 0.254  | 0.993     | 30.615   | 14.600 | 0.807 |
| Pied currawong     | 0.091 | 0.162  | 0.564     | 0.231    | 8.133  | 0.919 |
| Feral pig          | 0.026 | 0.047  | 0.541     | 1.846    | 0.733  | 0.950 |
| Dingo              | 0.025 | 0.041  | 0.608     | 0.385    | 2.267  | 0.980 |
| Wedge-tailed eagle | 0.010 | 0.037  | 0.283     | 0.769    | 0.133  | 0.993 |
| Spotted-tail quoll | 0.005 | 0.011  | 0.394     | 0.000    | 0.667  | 0.998 |
| Red fox            | 0.002 | 0.006  | 0.254     | 0.000    | 0.133  | 1.000 |
| Feral cat          | 0.000 | 0.000  | 0.000     | 0.000    | 0.000  | 1.000 |
|                    |       | Autumn | vs Winter | r        |        |       |
| Brushtail possum   | 0.440 | 0.281  | 1.564     | 25.500   | 86.357 | 0.628 |
| Raven spp.         | 0.164 | 0.158  | 1.041     | 20.083   | 14.214 | 0.862 |
| Feral pig          | 0.038 | 0.071  | 0.530     | 4.000    | 0.714  | 0.916 |
| Wedge-tailed eagle | 0.029 | 0.060  | 0.483     | 1.750    | 4.429  | 0.957 |
| Pied currawong     | 0.014 | 0.048  | 0.291     | 0.000    | 4.000  | 0.977 |
| Red fox            | 0.011 | 0.017  | 0.652     | 1.167    | 0.214  | 0.992 |
| Spotted-tail quoll | 0.002 | 0.008  | 0.289     | 0.000    | 0.286  | 0.996 |
| Dingo              | 0.002 | 0.005  | 0.367     | 0.333    | 0.000  | 0.998 |
| Feral cat          | 0.001 | 0.005  | 0.240     | 0.000    | 0.071  | 1.000 |
|                    |       | Autumn | vs Spring | <b>,</b> |        |       |
| Raven sp.          | 0.365 | 0.276  | 1.325     | 20.083   | 71.000 | 0.497 |
| Brushtail possum   | 0.205 | 0.219  | 0.939     | 25.500   | 14.600 | 0.776 |
| Pied currawong     | 0.080 | 0.149  | 0.537     | 0.000    | 8.133  | 0.885 |
| Feral pig          | 0.036 | 0.055  | 0.649     | 4.000    | 0.733  | 0.933 |
| Dingo              | 0.021 | 0.037  | 0.565     | 0.333    | 2.267  | 0.962 |

| Wedge-tailed eagle | 0.014 | 0.023    | 0.598    | 1.750  | 0.133  | 0.980 |
|--------------------|-------|----------|----------|--------|--------|-------|
| Red Fox            | 0.010 | 0.015    | 0.691    | 1.167  | 0.133  | 0.994 |
| Spotted-tail quoll | 0.004 | 0.011    | 0.392    | 0.000  | 0.667  | 1.000 |
| Feral cat          | 0.000 | 0.000    | 0.000    | 0.000  | 0.000  | 1.000 |
|                    |       | Winter v | s Spring |        |        |       |
| Brushtail possum   | 0.353 | 0.245    | 1.442    | 86.357 | 14.600 | 0.469 |
| Raven spp.         | 0.290 | 0.248    | 1.166    | 14.214 | 71.000 | 0.853 |
| Pied currawong     | 0.068 | 0.120    | 0.567    | 4.000  | 8.133  | 0.943 |
| Dingo              | 0.015 | 0.030    | 0.510    | 0.000  | 2.267  | 0.963 |
| Wedge-tailed eagle | 0.014 | 0.049    | 0.290    | 4.429  | 0.133  | 0.982 |
| Feral pig          | 0.006 | 0.009    | 0.614    | 0.714  | 0.733  | 0.990 |
| Spotted-tail quoll | 0.005 | 0.010    | 0.474    | 0.286  | 0.667  | 0.996 |
| Red Fox            | 0.002 | 0.007    | 0.373    | 0.214  | 0.133  | 0.999 |
| Feral cat          | 0.001 | 0.003    | 0.247    | 0.071  | 0.000  | 1.000 |
|                    |       |          |          |        |        |       |

**Table 7.** The Akaike information criterion (AIC) ranking of each of the models for investigation events species richness (top) and scavenging events species richness (bottom). Parsimoniously competitive models ( $\Delta AICc < 2.00$ ) are denoted in *italics*.

| No. | Model                 | df    | logLik AICc           | ΔAICc | weight |
|-----|-----------------------|-------|-----------------------|-------|--------|
|     | Investig              | ation | Events Species Richn  | ess   |        |
| 1   | Seasons               | 4     | 192.082               | 0.00  | 0.292  |
| 2   | Null (intercept only) | 1     | 192.131               | 0.05  | 0.285  |
| 3   | Seasons + Altitude    | 5     | 193.360               | 1.28  | 0.154  |
| 4   | Altitude              | 2     | 193.537               | 1.46  | 0.141  |
|     | Scaven                | ging  | Events Species Richne | SS    |        |
| 1   | Null (intercept only) | 1     | 194.288               | 0     | 0.400  |
| 2   | Seasons               | 4     | 195.294               | 1.01  | 0.241  |
| 3   | Altitude              | 2     | 195.546               | 1.26  | 0.213  |
| 4   | Seasons + Altitude    | 5     | 196.441               | 2.15  | 0.136  |

| Table 8. The base generalised linear model (GLM) for investigation event species richness     |
|-----------------------------------------------------------------------------------------------|
| (top) and scavenging event species richness (bottom). Significant p-values ( $p < 0.05$ ) are |
| denoted in <b>bold</b> .                                                                      |

| Inve      | estigation Even                                                                               | ats<br>3.487                                                                            | <0.001                                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.852     | 0.531                                                                                         | 3.487                                                                                   | <0.001                                                                                                                                                                                                                                                               |
| 0.226     |                                                                                               |                                                                                         | <0.001                                                                                                                                                                                                                                                               |
| -0.236    | 0.122                                                                                         | -1.933                                                                                  | 0.053                                                                                                                                                                                                                                                                |
| -0.258    | 0.125                                                                                         | -2.055                                                                                  | 0.040                                                                                                                                                                                                                                                                |
| -0.264    | 0.125                                                                                         | -2.104                                                                                  | 0.035                                                                                                                                                                                                                                                                |
| < 0.001   | < 0.001                                                                                       | -0.853                                                                                  | 0.394                                                                                                                                                                                                                                                                |
| Sca       | venging Event                                                                                 | ts                                                                                      |                                                                                                                                                                                                                                                                      |
| 1.498     | 0.779                                                                                         | 1.922                                                                                   | 0.055                                                                                                                                                                                                                                                                |
| 0.293     | 0.179                                                                                         | 1.640                                                                                   | 0.101                                                                                                                                                                                                                                                                |
| -0.095    | 0.202                                                                                         | -0.470                                                                                  | 0.638                                                                                                                                                                                                                                                                |
| 0.174     | 0.186                                                                                         | 0.934                                                                                   | 0.350                                                                                                                                                                                                                                                                |
| < - 0.001 | < 0.001                                                                                       | -0.920                                                                                  | 0.358                                                                                                                                                                                                                                                                |
| _         | -0.236<br>-0.258<br>-0.264<br><0.001<br>Sca<br>1.498<br>0.293<br>-0.095<br>0.174<br>< - 0.001 | -0.236       0.122         -0.258       0.125         -0.264       0.125         <0.001 | -0.236 $0.122$ $-1.933$ $-0.258$ $0.125$ $-2.055$ $-0.264$ $0.125$ $-2.104$ $<0.001$ $<0.001$ $-0.853$ Scavenging Events1.498 $0.779$ $1.498$ $0.779$ $1.922$ $0.293$ $0.179$ $1.640$ $-0.095$ $0.202$ $-0.470$ $0.174$ $0.186$ $0.934$ $< -0.001$ $<0.001$ $-0.920$ |

| <b>Table 9.</b> The Akaike information criterion (AIC) ranking of each of the models for time to first |
|--------------------------------------------------------------------------------------------------------|
| detection (top) and time to first scavenging (bottom). Parsimoniously competitive models               |
| ( $\Delta$ AICc < 2.00) are denoted in <i>italics</i> .                                                |

| No. | Model                 | df      | logLik          | AICc  | ΔAICc | weight |
|-----|-----------------------|---------|-----------------|-------|-------|--------|
|     | Tiı                   | me to   | First Detection | on    |       |        |
| 1   | Seasons               | 5       | -282.223        | 575.6 | 0.00  | 0.730  |
| 2   | Seasons + Altitude    | 7       | -279.511        | 577.6 | 1.99  | 0.269  |
| 3   | Null (intercept only) | 1       | -292.747        | 589.7 | 14.11 | 0.001  |
| 4   | Altitude              | 4       | -291.294        | 592.5 | 16.92 | 0.000  |
|     | Tim                   | ne to F | irst Scavengi   | ing   |       |        |
| 1   | Seasons               | 5       | -330.042        | 671.3 | 0.00  | 0.438  |
| 2   | Null (intercept only) | 2       | -333.864        | 672.0 | 0.65  | 0.317  |
| 3   | Seasons + Altitude    | 9       | -325.495        | 673.2 | 1.93  | 0.167  |
| 4   | Altitude              | 5       | -331.655        | 674.8 | 3.46  | 0.078  |

| Variables | Estimate | Std. error      | t value | р       |
|-----------|----------|-----------------|---------|---------|
|           | Time t   | o First Detecti | on      |         |
| Intercept | 3.796    | 0.260           | 14.621  | < 0.001 |
| Spring    | -0.308   | 0.369           | -0.835  | 0.404   |
| Summer    | 1.148    | 0.373           | 3.077   | 0.002   |
| Winter    | -0.729   | 0.374           | -1.948  | 0.051   |
| Variable  | edf      | Ref.df          | Chi.sq  | р       |
| Altitude  | 2.265    | 2.867           | 5.16    | 0.13    |
|           | Time to  | First Scaveng   | ging    |         |
| Intercept | 5.255    | 0.281           | 18.674  | < 0.001 |
| Spring    | -0.650   | 0.387           | -1.681  | 0.092   |
| Summer    | 0.354    | 0.397           | 0.893   | 0.372   |
| Winter    | -0.808   | 0.392           | -2.064  | 0.039   |
| Variable  | edf      | Ref.df          | Chi.sq  | р       |
| Altitude  | 3.294    | 4.115           | 9.227   | 0.048   |

**Table 10.** The base generalised linear model (GLM) for time to first detection (top) and timeto first scavenging (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

**Table 11.** The Tukey's honest significance test of the base generalised linear model (GLM) for time to first detection (top) and time to first scavenging (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

| Contrast        | Estimate    | SE        | df    | t ratio | р       |
|-----------------|-------------|-----------|-------|---------|---------|
|                 | Time to Fi  | rst Detec | tion  |         |         |
| Autumn - Spring | 0.308       | 0.448     | 51.7  | 0.688   | 0.901   |
| Autumn - Summer | -1.148      | 0.453     | 51.7  | -2.535  | 0.066   |
| Autumn - Winter | 0.729       | 0.454     | 51.7  | 1.605   | 0.385   |
| Spring - Summer | -1.456      | 0.453     | 51.7  | -3.216  | 0.012   |
| Spring - Winter | 0.421       | 0.456     | 51.7  | 0.922   | 0.793   |
| Summer - Winter | 1.876       | 0.461     | 51.7  | 4.071   | < 0.001 |
|                 | Time to Fir | st Scaver | nging |         |         |
| Autumn - Spring | 0.650       | 0.506     | 47.7  | 1.286   | 0.576   |
| Autumn - Summer | -0.354      | 0.519     | 47.7  | -0.683  | 0.903   |
| Autumn - Winter | 0.808       | 0.512     | 47.7  | 1.578   | 0.400   |
| Spring - Summer | -1.004      | 0.499     | 47.7  | -2.013  | 0.198   |
| Spring - Winter | 0.158       | 0.494     | 47.7  | 0.320   | 0.989   |
| Summer - Winter | 1.163       | 0.507     | 47.7  | 2.291   | 0.114   |

| No. | Model                 | df | logLik    | AICc   | ΔAICc | weight |
|-----|-----------------------|----|-----------|--------|-------|--------|
| 1   | Seasons               | 5  | -4279.252 | 8568.5 | 0.00  | 0.690  |
| 2   | Seasons + Altitude    | 6  | -4279.054 | 8570.1 | 1.61  | 0.309  |
| 3   | Null (intercept only) | 2  | -4289.519 | 8583.0 | 14.53 | 0.000  |
| 4   | Altitude              | 3  | -4289.413 | 8584.8 | 16.32 | 0.000  |

**Table 12.** The Akaike information criterion (AIC) ranking of each of the models for scavengingactivity. Parsimoniously competitive models ( $\Delta AICc < 2.00$ ) are denoted in *italics*.

| Variables | Estimate | Std. error | z value | р     |
|-----------|----------|------------|---------|-------|
| Spring    | 0.776    | 0.260      | 2.981   | 0.003 |
| Summer    | -0.358   | 0.274      | -1.307  | 0.191 |
| Winter    | 0.667    | 0.264      | 2.529   | 0.011 |
| Altitude  | -0.059   | 0.093      | -0.628  | 0.530 |

**Table 13.** The base generalised linear model (GLM) for scavenging activity. Significant p-values (p < 0.05) are denoted in **bold**.

| Contrast        | Estimate | SE    | df  | z ratio | р       |
|-----------------|----------|-------|-----|---------|---------|
| Autumn - Spring | -0.776   | 0.260 | Inf | -2.981  | 0.015   |
| Autumn - Summer | 0.358    | 0.274 | Inf | 1.307   | 0.558   |
| Autumn - Winter | -0.667   | 0.264 | Inf | -2.529  | 0.056   |
| Spring - Summer | 1.134    | 0.265 | Inf | 4.278   | < 0.001 |
| Spring - Winter | 0.109    | 0.255 | Inf | 0.429   | 0.974   |
| Summer - Winter | -1.025   | 0.269 | Inf | -3.813  | < 0.001 |

**Table 14.** The Tukey's honest significance tests of the base generalised linear model (GLM)for scavenging activity. Significant p-values (p < 0.05) are denoted in **bold**.

**Table 15.** The Akaike information criterion (AIC) ranking of each of the models for investigation event duration (top) and scavenging event duration (bottom). Parsimoniously competitive models ( $\Delta$ AICc < 2.00) are denoted in *italics*.

| No. | Model                 | df     | logLik        | AICc    | ΔAICc | weight |
|-----|-----------------------|--------|---------------|---------|-------|--------|
|     | Inv                   | estiga | tion Event Du | ration  |       |        |
| 1   | Null (intercept only) | 3      | -2567.223     | 5140.5  | 0.00  | 0.526  |
| 2   | Seasons               | 6      | -2565.157     | 5142.3  | 1.89  | 0.204  |
| 3   | Altitude              | 4      | -2567.223     | 5142.5  | 2.01  | 0.193  |
| 4   | Seasons + Altitude    | 7      | -2565.140     | 5144.3  | 3.87  | 0.076  |
|     | Sc                    | aveng  | ing Event Du  | ration  |       |        |
| 1   | Seasons               | 6      | -13666.05     | 27344.1 | 0.00  | 0.592  |
| 2   | Seasons + Altitude    | 7      | -13665.47     | 27345.0 | 0.86  | 0.385  |
| 3   | Null (intercept only) | 3      | -13672.62     | 27351.3 | 7.14  | 0.017  |
| 4   | Altitude              | 4      | -13672.57     | 27353.2 | 9.04  | 0.006  |

| Variables | Estimate   | Std. error    | t value | р       |
|-----------|------------|---------------|---------|---------|
|           | Investigat | ion Event Dur | ration  |         |
| Intercept | -0.045     | 0.151         | -0.298  | 0.765   |
| Spring    | -0.027     | 0.207         | -0.130  | 0.897   |
| Summer    | 0.357      | 0.216         | 1.657   | 0.098   |
| Winter    | 0.196      | 0.209         | 0.937   | 0.349   |
| Altitude  | 0.014      | 0.075         | 0.182   | 0.856   |
|           | Scavengi   | ng Event Dura | ation   |         |
| Intercept | 2.683      | 0.124         | 21.678  | < 0.001 |
| Spring    | -0.639     | 0.163         | -3.925  | < 0.001 |
| Summer    | -0.257     | 0.179         | -1.439  | 0.150   |
| Winter    | -0.238     | 0.165         | -1.445  | 0.149   |
| Altitude  | 0.063      | 0.059         | 1.077   | 0.282   |

**Table 16.** The base generalised linear model (GLM) for investigation event duration (top) andscavenging event duration (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

**Table 17.** The Tukey's honest significance test of the base generalised linear model (GLM) for investigation event duration (top) and scavenging event duration (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

| Contrast        | Estimate      | SE       | df      | z ratio | р       |
|-----------------|---------------|----------|---------|---------|---------|
|                 | Investigation | Event Du | uration |         |         |
| Autumn - Spring | 0.027         | 0.207    | Inf     | 0.130   | 1.000   |
| Autumn - Summer | -0.357        | 0.216    | Inf     | -1.657  | 0.347   |
| Autumn - Winter | -0.196        | 0.209    | Inf     | -0.937  | 0.785   |
| Spring - Summer | -0.384        | 0.210    | Inf     | -1.825  | 0.261   |
| Spring - Winter | -0.223        | 0.204    | Inf     | -1.093  | 0.694   |
| Summer - Winter | 0.161         | 0.213    | Inf     | 0.755   | 0.874   |
|                 | Scavenging 1  | Event Du | ration  |         |         |
| Autumn - Spring | 0.639         | 0.163    | Inf     | 3.925   | < 0.001 |
| Autumn - Summer | 0.257         | 0.179    | Inf     | 1.439   | 0.475   |
| Autumn - Winter | 0.238         | 0.165    | Inf     | 1.445   | 0.472   |
| Spring - Summer | -0.382        | 0.167    | Inf     | -2.183  | 0.102   |
| Spring - Winter | -0.401        | 0.152    | Inf     | -2.643  | 0.041   |
| Summer - Winter | -0.019        | 0.169    | Inf     | -0.112  | 1.000   |

# 1 Chapter 3 – Absence of apex predator top-down

# 2 effects on mesoscavengers

## 3 Abstract

4 Apex predators are renowned for their abilities to structure ecological communities and 5 regulate ecosystems. Conventional approaches to ecological theories regarding apex predators 6 often only consider their predatory capabilities. However, despite their name, most apex 7 predators scavenge and whilst largely opportunistic, scavenging rates can be substantial in 8 response to low prey availability. Consequently, within a scavenging context, predators can 9 influence the scavenging behaviours of other species as well as scavenging dynamics more 10 broadly. Further still, scavenger guilds are composed of a unique and diverse group of taxa, 11 and thus, the top-down scavenging effects of apex predators have the potential to result in novel 12 inter-specific interactions surrounding carrion. Despite the presence of and scavenging by an 13 apex predator, the dingo (*Canis dingo*), scavenging dynamics within Australian Alps have been 14 demonstrated to be dominated by three low ranking mesoscavengers, the brushtail possum 15 (Trichosurus vulpecula) and two raven species (Corvus coronoides and Corvus mellori) -16 Chapter 2. Therefore, here, top-down scavenging effects exerted by the dingo were assessed 17 regarding potential impacts on the scavenging activities of these mesoscavengers. Overall, 18 dingoes were found to scavenge at low rates and no evidence was found to suggest dingoes 19 influenced the scavenging behaviours of brushtail possums or raven spp. This raised several 20 questions regarding the extent to which dingoes scavenge when anthropogenically suppressed, 21 and in response to an overabundance of carrion. Each of these concepts are discussed herein, 22 with a particular focus on density dependent predator theories, and how each scenario may 23 determine the extent to which dingoes can exert top-down scavenging effects.

### 24 Introduction

25 Globally, apex predators are one of the most recognised and studied groups of taxa due to their 26 status as keystone species i.e., species that drive community dynamics and structure food webs 27 within ecosystems [1]. The predatory activities of such species can directly regulate prey 28 populations and their recognition as potentially dangerous predators can indirectly influence 29 movement and habitat use by other species [2]. Both of these mechanisms facilitate trophic 30 cascades which can maintain biodiversity in both the animal and plant kingdoms [3, 4]. These 31 types of cascades are present in terrestrial, aquatic, and marine ecosystems. Some well cited 32 examples include the suppression of elk (Cervus canadensis) populations following the 33 reintroduction of grey wolves (Canis lupus) to Yellowstone National Park [5, 6], and the 34 maintenance of near shore community biodiversity in the Aleutian Islands (Alaska) by sea 35 otters (Enhydra lutris) [7].

36 Predators are typically classified as either an apex predator or mesopredator. The former are 37 species characterised by their position at the top of the food chain and lack of natural predators 38 [8], whilst the later are "any midranking predator in a food web, regardless of its size or 39 taxonomy" [9]. The presence or absence of either species group within ecosystems can cause 40 trophic cascades that can result from their interspecific interactions or lack thereof [8]. The 41 mesopredator release hypothesis explains how constraints to the population growth of 42 mesopredators, which are controlled by competitively dominant apex predators, are released 43 following a decline in apex predator population levels [10-12]. Theories such as this, and indeed others, demonstrate how the preservation of apex predators alone, because of their high 44 45 trophic level, can have flow-on effects on ecosystem health, biodiversity, and the conservation of other subordinate species [13]. 46

47 Most conventional approaches to ecological theories regarding apex predators, however, often 48 only consider their role as predatory species [2]. Whilst this predatory role is undoubtably 49 crucial to a plethora of essential ecosystem services globally, the other roles that apex predators 50 play are often overlooked [14, 15]. Despite their name, apex predators are not purely predatory, 51 most, if not all, scavenge on dead animal remains (carrion) at some point in their lifetime. This 52 phenomenon is mostly opportunistic, however, scavenging rates can be substantial in response 53 to low prey availability [16]. For example, in Scandinavia, wolverine (Gulo gulo) feeding 54 strategies (i.e., predation vs scavenging) were demonstrated to be seasonally dependent on prey 55 body condition and carrion supply which in combination promoted predation during summer 56 and scavenging during winter [17]. This flexibility in diet is important to distinguish, especially 57 so regarding predators, because there is a clear differentiation in the fitness outcomes of 58 scavenging which results in only a fraction of the energy costs associated with predation [18, 59 19]. Although only recently considered, it is, therefore, evident that scavenging may provide 60 an important energy pathway for predators. Not only does this have cause to force the 61 revaluation of the diets and energy budgets of predators but also expands the plethora of 62 ecosystem processes dictated by predators to include scavenging.

63 Apex predators have most often been credited with dictating scavenging dynamics within 64 ecosystems via the provision of carrion from their partially consumed prey [18]. Whilst this is 65 an important consideration, it overshadows the fact that predators can also dictate scavenging 66 dynamics via their own scavenging activities surrounding non-prey killed carrion [18]. Apex 67 predators, similarly to vultures (obligate scavengers), can rapidly consume carrion biomass, 68 including bones, and their presence at carrion can, therefore, accelerate carcass decomposition 69 [20]. Scavenging on non-prey killed carrion by dominant scavenging predators can also directly 70 force other scavengers from carrion (competition) and/or influence how they access carrion 71 (landscape of fear) [19, 21-26]. For instance, the black bear (Ursus americanus), was

demonstrated to influence the structure and composition of its scavenger guild in northern California [25]. Specifically, the presence of black bears at carcasses limited scavenger species richness, significantly reduced sum scavenging time by other scavengers, and increased the nestedness of the scavenger guild [25]. These types of top-down effects are often extreme enough that many mesoscavengers utilise spatial and temporal measures, as well as flexible behavioural strategies, to avoid confrontations with competitively dominant apex scavengers and exploit carrion [25, 27].

79 Within a scavenger guild a unique selection of species are present [28]. There is potential for 80 dominant scavenging predators to influence the scavenging behaviours and activities of any of 81 these species, be it directly or indirectly. Consequently, a suite of novel interspecific 82 interactions can occur that are not purely considered competitive interactions strictly between 83 predators, as discussed above and more broadly in the literature. The 'mesoscavenger release hypothesis' was recently coined and is essentially a reframing of the 'mesopredator release 84 85 hypothesis' within a scavenging context [21]. Here, the importance of recognising predators also as scavengers is emphasised because the dynamics of such a 'mesoscavenger release' are 86 87 equally as complex as the conventional 'mesopredator release' and have the potential to impact 88 a much wider breadth of taxa [22, 25, 26, 28, 29]. For instance, in Tasmania (an island state of 89 Australia), recent disease related declines in the population of Tasmanian devils (Sarcophilus 90 harrisii), Tasmania's native marsupial apex predator and scavenger, has had cascading effects 91 on other scavengers and scavenging dynamics [26, 29]. As a result, in the areas where 92 Tasmanian devil density is low, a native avian scavenger, the forest raven (Corvus tasmanicus), 93 scavenged longer on carcasses, whilst an invasive mesopredator, the feral cat (*Felis catus*), 94 scavenged at more carcasses. This mesoscavenger release highlighted how apex predators 95 within a scavenging context can exert top-down effects on a novel selection of species only 96 present within scavenger guilds.

97 The Tasmanian devil is, however, absent from mainland Australia. The dingo (Canis dingo), 98 despite having a brief evolutionary and ecological history in Australia (~ 4000 years) [30], has 99 established itself as mainland Australia's dominant apex predator. Many government agencies 100 and agricultural communities considering the dingo a pest species. However, the dingo can 101 have a strong regulatory role within many Australian ecosystems that spans multiple trophic 102 levels and includes the beneficial control of overabundant prey (i.e., kangaroo -103 Macropodidae) [31, 32] and the maintenance of biodiversity via suppression of invasive 104 mesopredators (i.e., red fox - Vulpes vulpes and feral cat - Felius catus) [30, 33-36]. The 105 regulatory role of the dingo is not only localised to specific ecosystems either, but is also 106 exerted at a continental scale [37]. Whilst there has been a strong focus on the predation effects 107 of dingoes, a common trend in the global predator-based literature, the dingo is also an 108 extremely effective scavenger [38-41]. Dingoes, like most predators, are facultative scavengers 109 and will opportunistically scavenge on carrion when available [38], however, carrion can 110 become a crucial part of their diet during food shortages [41].

111 Numerous studies have documented the scavenging activities of dingoes [38, 41-43], the most 112 comprehensive of which experimentally monitored dingo scavenging across three Australian 113 ecosystems (alpine, forest, and desert) [38]. This study by Spencer and Newsome (2021) found 114 that dingo scavenging dynamics were highly variable and complex, but intrinsically linked to 115 the seasons, and that in certain contexts dingoes could substantially contribute to carrion 116 biomass loss. However, Spencer and Newsome (2021) did note a limitation of their study being 117 that the top-down scavenging effects of dingoes were not assessed, and thus, emphasised that 118 additional seasonal replications may yield more detailed information on the role of dingoes as 119 dominant scavenging predators. Of relevance here is Forsyth et al.'s 2014 study that found 120 dingoes to limit the spatial and temporal availability of carcasses to an invasive mesoscavenger, the red fox [40]. Also of relevance, but to a lesser degree, are the findings of Schlacher et al. 121

122 (2014) which demonstrated domestic dogs (Canis lupus familiaris), close relatives of the dingo, 123 to outcompete native scavengers for carrion on urban beaches [44]. However, these are the only 124 two such studies describing the top-down scavenging effects of dingoes, and indeed, a recent 125 review of canid scavenging effects by Wirsing and Newsome (2020) found that the scavenging 126 effects of most canid species remain little understood [39]. Furthermore, the top-down effects 127 of dingoes in general (i.e., those not limited to scavenging) are often only considered regarding 128 larger mesopredators and/or competitors [30, 33-37, 45]. This makes it difficult to transfer such 129 findings to a scavenging context given the diverse selection of species present within scavenger 130 guilds. Therefore, the fear effects that dingoes exert surrounding carrion and its impacts on 131 more novel scavenger species (i.e., potential prey) is an area that warrants further attention.

132 The brushtail possum (Trichosurus vulpecula) and raven spp. (Corvus coronoides and Corvus 133 *mellori*) are such facultative scavengers that could potentially have novel interspecific 134 interactions with dingoes surrounding carrion. As outlined in Chapter 2, these species were the 135 most abundant scavengers observed in the Australian Alps and dominated the scavenging 136 dynamics of the guild. When scavenging, these species must consider the threats posed to them 137 by dominant scavenging predators such as the dingo. A key question is, therefore, whether the 138 high rates of scavenging by brushtail possums and raven spp. are regulated by the top-down 139 scavenging effects of dingoes. To understand if such a scavenging dynamic was important 140 within the Australian Alps, firstly, the baseline scavenging rates of the dingo at two temporal 141 scales (daily and seasonal) was determined. By understanding the ways in which an apex 142 predator utilises an opportunistic resource, the extent to which dingo scavenging effects impact 143 the scavenging of other species can then be established. Specifically, the presence of dingoes 144 at carcasses, whether it be to investigate or scavenge, was analysed to determine how it 145 influences the probability and duration of scavenging by brushtail possums and raven spp.. 146 Broadly, it was predicted that predator avoidance (i.e., the landscape of fear [46]) behaviours

would determine the scavenging dynamics of brushtail possums and raven spp. surrounding carrion [24]. Specifically, it was expected that at carcasses visited by dingoes, brushtail possums would investigate carcasses more often than scavenging on the carcass itself. In addition, it was also predicted that at carcasses visited by dingoes, brushtail possum scavenging bouts would be of shorter duration. Similar results were expected for raven spp., however, to a lesser degree given their more effective predator avoidance abilities (flight), and thus, lower perceived risk to predation. This study provides insights into the role an apex predator has within a scavenger guild and uncovers the strength of intraspecific interactions between predator and novel prey occurring around carrion.

#### 166 Methods

167 Due to both *Chapters 2* and *3* being formatted for submission to relevant scientific journals, 168 there is unavoidable repetition of methods between the two chapters.

169 Study site

170 This study was conducted in Kosciuszko National Park, located in southern New South Wales, Australia. This region includes many of the highest peaks and ranges within Australia's Great 171 172 Dividing Range, including Australia's highest peak – Mount Kosciuszko. The landscape is 173 delineated into three altitudinally distinct ecological communities – montane (500m-1500m) 174 subalpine (1500m-1850m), and alpine (1850m-2228m) [47]. This work was undertaken within 175 the montane zone (between approximately 1000m - 1500m) which is characterised by forest 176 stands dominated by snow gum (Eucalyptus pauciflora) in association with various other Eucalyptus species. 177

#### 178 Ethics, licenses, and permits

The following described work received all required ethics, licenses, and permits approved by the relevant authorities (i.e., The University of Sydney; New South Wales Office of Environment and Heritage; and New South Wales National Parks and Wildlife Services). All kangaroo carcasses used for the purposes of this research were sourced fresh and locally from existing authorised and legally approved management culls that are conducted to control overabundant kangaroo populations.

#### 185 Fieldwork

A 15 km transect was established through Kosciuszko National Park along which all carcass
monitoring took place (Figure 1). This transect ran northeast – southwest from a border region
of the national park inwards towards its interior and was selected due to its accessibility (i.e.,

189 road access) and because it is a relatively undisturbed area with little human activity. 190 Monitoring periods were established to coincide with the four seasons: autumn – March 2020; 191 winter - July 2020; spring - October 2020; summer - January 2021. During each season, 15 192 sites were established along the transect, separated by approximately 1 km from the nearest 193 sites monitored within the same season and approximately 250m from the nearest sites 194 monitored during other seasons (60 different sites in total; Figure 1). The separation of the sites 195 as such ensured a level of spatial independence and it prevented habituation of scavengers to a 196 carrion source location [38, 48-50].



197 Figure 1. Location of the monitoring transect along which all 60 carcass sites were established

- 198 within Kosciuszko National Park (red = summer, orange = autumn, blue = winter, green =
- 199 spring).

200

201 Within each seasonal monitoring period, one fresh eastern grey kangaroo carcass was placed 202 at each site (15 total). The carcasses ranged in weight from 10kg-70kg and on average were 203 28.3kg ( $\pm 1.498$  – standard deviation). Each carcass was secured, using wire ties, to star pickets 204 driven into the ground to ensure they remained in situ to be monitored for 60 days [38, 48, 49]. 205 Vertebrate scavenger activity was monitored at each site using a Reconyx PC800 Hyperfire<sup>™</sup> 206 remote camera. Each camera was placed on a free-standing star picket three meters north of 207 the carcass – the southern aspect of the cameras decreased exposure to direct sunlight which 208 would otherwise reduce image quality. The cameras were calibrated to take photographs 209 continuously (approximately one image per second) when triggered by thermal movement (i.e., 210 rapid-fire, no wait period). These approaches and methods follow those previously used in 211 field-based scavenging research [38, 48-54].

#### 212 Analyses

213 Remote camera images were analysed for species presence and the number of individuals of a 214 species present. In order to determine distinct visitations of species, an 'event' was 215 characterised as a visitation by a species that occurred more than 10 minutes after the last 216 visitation by that same species. Only species-specific events could be characterised because 217 identification of individuals for most species was not possible. An event was characterised as 218 a 'scavenging event' if the species present scavenged on the monitored carcass in at least one 219 of the remote camera images consisting of that event, otherwise the event was characterised as 220 an 'investigation event'. Data from species recorded to have scavenged at least once were 221 included in the statistical analyses.

The R software environment (version 1.4.1717) was used for all statistical analyses. Similarly to *Chapter* 2, scavenger activity (i.e., probability of a scavenger investigating vs scavenging a carcass; binomial distribution), and investigation and scavenging event duration (in minutes; 225 Gamma distribution) were again used as response variable. However, these variables were only 226 modelled species specifically for each of the scavengers in question - the dingo, brushtail 227 possum, and raven spp.. For the dingo, each of the response variables were modelled only 228 against the explanatory variable of season. For the brushtail possum and raven spp., each of the 229 response variables were modelled against the explanatory variables of season and dingo 230 presence. Dingo presence was a binary explanatory variable that simply recorded whether any 231 given monitored carcass was visited by a dingo (1) or not visited by a dingo (0). Altitude was 232 excluded from these models given that it was demonstrated to be insignificant in Chapter 2. 233 These models were constructed twice, once using only investigation events and once using 234 only scavenging events. Only one model was constructed for scavenger activity as it is a binomial response variable (either investigation; 0, or scavenging; 1) designed specifically to 235 236 determine the probability of either an investigation event or scavenging event.

237 The relationships of each of these scavenging response variables with the explanatory variables 238 of season and dingo presence were modelled using either generalised linear models (GLM; R 239 Package 'lme4' [55]) or generalised linear mixed models (GLMM; R Package 'lme4' [55]), 240 and in the case of poorly fit models generalised additive models were utilised (GAM; R 241 Package 'mgcv' [56]). To determine the most parsimonious model(s), Akaike information 242 criterion (AIC) [57] was used ( $\Delta$ AICc level of significance < 2), with model selection 243 facilitated by the utilisation of the dredge function (R Package 'MuMIn' [58]). AIC considers 244 the different combinations of explanatory variables (i.e., combinations of season and presence) 245 within a model and as such the scavenging response variables had four possible models: non-246 interaction season and dingo presence model  $(x \sim y + z)$ , season model  $(x \sim y)$ , dingo presence model (x ~ z), and null model (x ~ 1). 247

Significance testing (*p* level of significance < 0.05) was also undertaken using the base model (i.e., non-interaction season and dingo presence model  $-x \sim y + z$ ) to determine which

| 250 | explanatory variables (seasons and/or dingo presence) and/or their levels (summer, autumn,     |
|-----|------------------------------------------------------------------------------------------------|
| 251 | winter, spring) were important in explaining each of the scavenging response variables. To     |
| 252 | yield additional information from these models, Tukey's honest significance tests were used to |
| 253 | determine which seasons were significantly different from one another regarding the modelled   |
| 254 | scavenging response variable (R Package emmeans) [59].                                         |
| 255 |                                                                                                |
| 256 |                                                                                                |
| 257 |                                                                                                |
| 258 |                                                                                                |
| 259 |                                                                                                |
| 260 |                                                                                                |
| 261 |                                                                                                |
| 262 |                                                                                                |
| 263 |                                                                                                |
| 264 |                                                                                                |
| 265 |                                                                                                |
| 266 |                                                                                                |
| 267 |                                                                                                |

### 268 **Results**

Of the 60 carcass sites monitored, remote camera data was gathered for 58 – remote camera data for two sites (one during winter and one during summer) were lost due to theft and camera failure. In total, there were 247,985 images of raven spp., 225,052 images of brushtail possums, and 19,772 images of dingoes. These images recorded 4182 distinct events for brushtail possums, 1866 distinct events for raven spp., and 103 distinct events for dingoes (Figure 2 and 3).



Figure 2. The total number of investigation events (shaded fill) and scavenging events (solid fill) each seasons for brushtail possums and raven spp..



Figure 3. The total number of dingo investigation events (shaded fill) and scavenging events(solid fill) each season.

The diurnal patterns of scavenging revealed a peak in brushtail possum scavenging frequency and duration from the early evening until midnight. Whilst raven spp. scavenging frequency and duration peaked during the middle of the day and late afternoon (Figure 4). Dingoes seemingly showed no preference for the time of day in which they scavenged (Figure 5).



**Figure 4.** The duration (in minutes) and time (24 hour) of each investigation event and





Figure 5. The duration (in minutes) and time (24 hour) of each investigation event (orange)
and scavenging event (blue) for dingoes.
#### 309 **Dingo scavenging activity**

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in dingo scavenging activity (Table S1). The first model was the seasons model ( $\Delta AICc = 0.00$ ) and the second was the null model ( $\Delta AICc = 0.09$ ). The base model was not significant (Figure 4; Table S2 and S3).



Figure 4. The carcass sites at which dingoes were recorded to investigate (ring), scavenge (circle), or both investigate and scavenge (X) the monitored carcass during each of the seasons.

### 326 Dingo investigation and scavenging duration

327 One model each was parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in 328 dingo investigation duration and scavenging duration (Table S4). Both these models were the 329 null models ( $\Delta AICc = 0.00$ ; Table S4). The base models were not significant (Table S5 and 330 S6).

#### 331 Brushtail possum scavenging activity

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in brushtail possum scavenging activity (Table S7). The first was the season model ( $\Delta AICc =$ 0.00) and the second the non-interaction season and dingo presence model ( $\Delta AICc = 0.73$ ). The base model demonstrated that winter had a significant effect on brushtail possum scavenging activity (p = 0.001; Table S8). Specifically, brushtail possums were 9.855, 6.117, and 7.029 times more likely to scavenge than investigate a carcass during winter than during autumn (p = 0.003), spring (p = 0.023), and summer (p = 0.016) respectively (Table S9).

#### 339 Brushtail possum investigation and scavenging duration

Three models and two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in brushtail possum investigation event duration and scavenging event duration respectively (Table S10). For both investigation and scavenging duration, the first was the null model ( $\Delta AICc = 0.00$ ), the second the dingo presence model ( $\Delta AICc = 0.55$  and 0.89), and for investigation event duration the third the non-interaction season and dingo presence model ( $\Delta AICc = 1.56$ ). The base models were not significant (Table S11 and S12).

### 346 Raven spp. scavenging activity

All four models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in the scavenging activity of raven spp. (Table S13). The first was the null model ( $\Delta AICc = 0.00$ ), the second the dingo presence model ( $\Delta AICc = 0.10$ ), the third the season model ( $\Delta AICc = 1.27$ ). =1.15), and the fourth the non-interaction season and dingo presence model ( $\Delta AICc = 1.27$ ). The base model demonstrated that summer had a significant effect on raven spp. scavenging activity (p = 0.043; Table S14).

353

#### 355 Raven spp. investigation and scavenging duration

Two models were parsimoniously competitive ( $\Delta AICc < 2$ ) in explaining the variation in raven spp. investigation event duration (Table S16). The first was the null model ( $\Delta AICc = 0.00$ ) and the second the dingo presence model ( $\Delta AICc = 1.92$ ). The base model was not significant (Table S17 and S18).

Two models were parsimoniously competitive ( $\Delta$ AICc <2) in explaining the variation in raven spp. scavenging event duration (Table S16). The first was the season model ( $\Delta$ AICc 0.00) and the second the non-interaction seasons and dingo presence model ( $\Delta$ AICc 2.00). The base model demonstrated that spring had a significant effect on raven spp. scavenging event duration (p = < 0.001; Table S17). Specifically, raven spp. scavenging event duration (in minutes) was 1.066 and 1.050 times shorter during spring than during autumn (p = < 0.001) and summer (p= 0.029) respectively (Table S18).

367

368

369

370

371

372

373

## 375 **Discussion**

376 Despite being the dominant apex predator and scavenger within the Australian Alps, here, the 377 occurrence of dingoes at carcass sites was found to have no influence on the scavenging activities and behaviours of the brushtail possum or raven spp., contradicting initial hypotheses. 378 379 Of the 58 carcasses monitored during this study only nine were scavenged on by dingoes 380 (15%). This low rate of dingo scavenging, which peaked in spring and did not occur at all in 381 winter, may allow other scavenger species to access carrion resources more easily (e.g., 382 brushtail possums and raven spp. – Chapter 2), although further manipulative studies would be 383 needed to demonstrate this link. Broadly, these findings also suggest the need to investigate 384 links between dingo population sizes and densities, the occurrence of dingoes at carcass sites, 385 and the severity of their top-down scavenging effects [21].

386 Apex predator density at any spatial or temporal scale within a landscape has been 387 demonstrated to be an important determinant of the extent to which they can exert top-down 388 effects [60-64]. In general, higher predator densities result in greater top-down effects [62, 63, 389 65]. By inference, the lack of top-down scavenging effects exerted by dingoes on brushtail 390 possums and raven spp. in this study could simply be explained by sporadic dingo presence at 391 carcasses (36%), and low dingo scavenging rates (15%), both of which are potentially 392 indicative of low dingo densities. Whilst this is in fact a likely explanation for these results, it 393 does oversimply density-dependent theories related to the top-down effects of predators.

There are many caveats to such theories. For instance, higher predator densities can result in increased inter/intra specific conflict between predators, and consequently, reduce top-down effects on prey species [62, 63]. Such complexities can also occur when considering a predator's density in conjunction with its home range, with both factors sharing an inverse relationship (i.e., as range increases density decreases) [66]. With regards to this study, anecdotal estimates suggest that there were at least three dingo packs recorded at carcass sites during the monitoring, and in fact, an active dingo den was observed within 50 meters of a carcass site at the western end of the transect. However, such observations remain circumstantial without further investigations into dingo population and pack dynamics, densities, home ranges, and the flow-on effects such factors have on other species within a scavenging context and more broadly.

405 Other studies have also described predator densities specifically regarding dingoes and its 406 bearing on the magnitude of their top-down effects [45, 61, 67-69]. One highly relevant study 407 investigated the scavenging dynamics of dingoes, invasive red foxes, and feral cats in an 408 ecosystem similar to that of the Australian Alps [40]. The study, by Forsyth et al. (2014) [40], 409 recorded dingo scavenging rates much higher than those recorded by this study (70% vs 15%). 410 Despite this, Forsyth et al. (2014) found that dingoes contributed very little to carcass biomass 411 loss and attributed this to low dingo densities, a legacy of intensive dingo control in the region. 412 Dingoes are also regularly baited and trapped, in and surrounding, Kosciuszko National Park 413 [70, 71]. This likely knocks down dingo pack size and reduces overall species density in the 414 area [72]. Therefore, similarly to Forsyth et al.'s (2014) proposal that anthropogenically 415 controlled low dingo densities hinder the ability of dingoes to contribute to carcass biomass 416 loss, the same concept may be applied to the dingo's ability to exert top-down effects within 417 scavenger guilds in the Australian Alps. It is apparent that there may be numerous density 418 dependent predator theories that explain the results of this study. Whilst the aims, field design, 419 and results of this study were not geared towards determining which of these theories best 420 explains why dingoes had little effect on the scavenging of brushtail possums and raven spp., 421 such theories are clearly at the foundations of these findings.

In addition to the dingo management regimes undertaken in the Australian Alps, there exists a
plethora of invasive species that have also warranted extensive culling programmes to combat

their detrimental impacts. The Australian Alps' susceptibility to vertebrate invasion has seen taxa including feral horses (*Equus ferus caballus*), deer (*Cervidae spp.*), feral goats (*Capra hircus*), feral pigs (*Sus scrofa*), and rabbits (*Oryctolagus cuniculus*) become established across the landscape since European colonisation. Often, many of the operations undertaken to suppress the populations of such invasive species leave culled animal carcasses *in situ* to decay. As a consequence of these management practises and operations, the Australian Alps may harbour abnormally high rates of carrion biomass.

431 The carcasses used in this study were those of Eastern grey kangaroos (Macropus giganteus), 432 a native prey species, and thus, predicted to be highly attractive to dingoes. However, the 433 carcasses of the larger culled ungulates (i.e., horses, deer, and pigs) may be more attractive to 434 scavengers in Australia when compared to the smaller and leaner native prey species i.e., 435 kangaroos. Therefore, with a likely abundance of available carrion biomass in the Australian 436 Alps, dingoes may be more attracted to and/or selective for the carcasses of larger invasive 437 species than to those of kangaroos. Once again, this study draws parallels to that of Forsyth et 438 al. (2014), as the presence of unknown hunter shot carcasses in the landscape was also 439 presented as an explanation for a lack of dingo scavenging effects [40]. The presence of other 440 unrelated and unknown carcasses within the landscape is an ever-present variable within any 441 experimental field-based scavenging study. However, it is of particular relevance here given 442 the likely high carrion loads present within the Australian Alps.

443

444

445

## 447 **Conclusion**

It has already been established across much of mainland Australia that dingoes can influence the populations and movements of subordinate species as well as maintain biodiversity and regulate ecosystems [30-37, 45]. It was expected that such apex predator effects would translate into a scavenging context given similar findings for other apex predators globally, specifically canid predators [39]. This, however, was not the case with dingoes seemingly scavenging too little to be able to effectively exert any top-down scavenging effects on either the brushtail possum or raven spp..

These results raise several questions regarding the dingo's ability to scavenge and the 455 456 frequency with which they do so. However, given past observations of relatively frequent dingo 457 scavenging rates [38, 40], these findings are probably indicative of low dingo densities within 458 the landscape. Additionally, given the high number of large bodied invasive species present 459 within the Australian Alps and the culling programmes they warrant, during culling seasons 460 there may be high carrion loads present within the landscape. Carrion saturation within 461 ecosystems may impact the ability of dingoes to exert top-down scavenging effects and/or may 462 have influenced the results of this study if dingoes are more attracted to the carcasses of 463 invasive species than that of native taxa.

These conclusions provide considerable scope and future direction for subsequent studies investigating dingo scavenging rates and their consequential scavenging effects and whether they may be dependent on dingo densities or carrion loads. Such concepts and suggested approaches are discussed in the following chapter (*Chapter 4 – Conclusion and future directions*).

469

## 471 **References**

- 472 1. Paine, R.T., A note on trophic complexity and community stability. The American
- 473 Naturalist, 1969. **103**(929): p. 91-93.
- 474 2. Lima, S.L., Nonlethal effects in the ecology of predator-prey interactions. Bioscience,
- 475 1998. **48**(1): p. 25-34.
- 476 3. Terborgh, J. and J.A. Estes, *Trophic cascades: predators, prey, and the changing*477 *dynamics of nature*. 2013: Island press.
- 478 4. Pace, M.L., et al., *Trophic cascades revealed in diverse ecosystems*. Trends in
  479 ecology & evolution, 1999. 14(12): p. 483-488.
- 480 5. Ripple, W.J. and R.L. Beschta, *Trophic cascades in Yellowstone: the first 15 years*481 *after wolf reintroduction.* Biological Conservation, 2012. 145(1): p. 205-213.
- 482 6. Fortin, D., et al., Wolves influence elk movements: behavior shapes a trophic cascade
  483 in Yellowstone National Park. Ecology, 2005. 86(5): p. 1320-1330.
- 484 7. Estes, J.A. and J.F. Palmisano, *Sea otters: their role in structuring nearshore*
- 485 *communities.* Science, 1974. **185**(4156): p. 1058-1060.
- 486 8. Wallach, A.D., et al., *What is an apex predator?* Oikos, 2015. **124**(11): p. 1453-1461.
- 487 9. Prugh, L.R., et al., *The rise of the mesopredator*. Bioscience, 2009. **59**(9): p. 779-791.
- 488 10. Soulé, M.E., et al., Reconstructed dynamics of rapid extinctions of chaparral-
- 489 *requiring birds in urban habitat islands*. Conservation Biology, 1988. **2**(1): p. 75-92.
- 490 11. Ritchie, E.G. and C.N. Johnson, *Predator interactions, mesopredator release and*
- 491 *biodiversity conservation*. Ecology letters, 2009. **12**(9): p. 982-998.
- 492 12. Crooks, K.R. and M.E. Soulé, *Mesopredator release and avifaunal extinctions in a*493 *fragmented system.* Nature, 1999. 400(6744): p. 563-566.

| 494 | 13. | Sergio, F., et al., Ecologically justified charisma: preservation of top predators     |
|-----|-----|----------------------------------------------------------------------------------------|
| 495 |     | delivers biodiversity conservation. Journal of Applied Ecology, 2006. 43(6): p. 1049-  |
| 496 |     | 1055.                                                                                  |
| 497 | 14. | Mellard, J.P., et al., Effect of scavenging on predation in a food web. Ecology and    |
| 498 |     | Evolution, 2021.                                                                       |
| 499 | 15. | Moleón, M., et al., Carcass size shapes the structure and functioning of an African    |
| 500 |     | scavenging assemblage. Oikos, 2015. 124(10): p. 1391-1403.                             |
| 501 | 16. | Ordiz, A., et al., Individual variation in predatory behavior, scavenging and seasonal |
| 502 |     | prey availability as potential drivers of coexistence between wolves and bears.        |
| 503 |     | Diversity, 2020. 12(9): p. 356.                                                        |
| 504 | 17. | Mattisson, J., et al., Predation or scavenging? Prey body condition influences         |
| 505 |     | decision-making in a facultative predator, the wolverine. Ecosphere, 2016. 7(8): p.    |
| 506 |     | e01407.                                                                                |
| 507 | 18. | Pereira, L.M., N. Owen-Smith, and M. Moleón, Facultative predation and scavenging      |
| 508 |     | by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mammal        |
| 509 |     | Review, 2014. 44(1): p. 44-55.                                                         |
| 510 | 19. | Moleón, M., et al., Inter-specific interactions linking predation and scavenging in    |
| 511 |     | terrestrial vertebrate assemblages. Biological Reviews, 2014. 89(4): p. 1042-1054.     |
| 512 | 20. | Gutiérrez-Cánovas, C., et al., Large home range scavengers support higher rates of     |
| 513 |     | carcass removal. Functional Ecology, 2020. 34(9): p. 1921-1932.                        |
| 514 | 21. | O'Bryan, C.J., M.H. Holden, and J.E. Watson, The mesoscavenger release hypothesis      |
| 515 |     | and implications for ecosystem and human well-being. Ecology Letters, 2019. 22(9):     |
| 516 |     | p. 1340-1348.                                                                          |
|     |     |                                                                                        |

- 517 22. Allen, M.L., L.M. Elbroch, and H.U. Wittmer, *Can't bear the competition: Energetic*518 *losses from kleptoparasitism by a dominant scavenger may alter foraging behaviors*519 *of an apex predator.* Basic and Applied Ecology, 2021. 51: p. 1-10.
- 520 23. Krofel, M., I. Kos, and K. Jerina, *The noble cats and the big bad scavengers: effects*
- 521 *of dominant scavengers on solitary predators.* Behavioral Ecology and Sociobiology,
- 522 2012. **66**(9): p. 1297-1304.
- 523 24. Moleón, M. and J.A. Sánchez-Zapata, *The role of carrion in the landscapes of fear*524 *and disgust: A review and prospects.* Diversity, 2021. 13(1): p. 28.
- Allen, M.L., et al., *Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community*. PLoS One, 2014. 9(7): p. e102257.
- 527 26. Cunningham, C.X., et al., *Top carnivore decline has cascading effects on scavengers*528 *and carrion persistence*. Proceedings of the Royal Society B, 2018. 285(1892): p.
- *529* 20181582.
- 530 27. Wang, Y., M.L. Allen, and C.C. Wilmers, *Mesopredators display behaviourally*
- 531 *plastic responses to dominant competitors when scavenging and communicating.*
- 532 bioRxiv, 2020.
- 533 28. Mateo-Tomás, P., et al., *Both rare and common species support ecosystem services in*534 *scavenger communities*. Global Ecology and Biogeography, 2017. 26(12): p. 1459535 1470.
- 536 29. Fielding, M.W., et al., *Dominant carnivore loss benefits native avian and invasive*537 *mammalian scavengers.* bioRxiv, 2021.
- 538 30. Letnic, M., E.G. Ritchie, and C.R. Dickman, *Top predators as biodiversity*
- 539 *regulators: the dingo Canis lupus dingo as a case study.* Biological Reviews, 2012.
- 540 **87**(2): p. 390-413.

- 541 31. Pople, A., et al., *Trends in the numbers of red kangaroos and emus on either side of*542 *the South Australian dingo fence: evidence for predator regulation?* Wildlife
- 543 Research, 2000. **27**(3): p. 269-276.
- 544 32. Caughley, G., et al., *Does dingo predation control the densities of kangaroos and*545 *emus*? Wildlife Research, 1980. 7(1): p. 1-12.
- 546 33. Glen, A.S., et al., *Evaluating the role of the dingo as a trophic regulator in Australian*547 *ecosystems*. Austral Ecology, 2007. **32**(5): p. 492-501.
- 548 34. Letnic, M., et al., *Demonising the dingo: how much wild dogma is enough?* Current
  549 Zoology, 2011. 57(5): p. 668-670.
- S50 35. Newsome, T.M., et al., *Resolving the value of the dingo in ecological restoration*.
  Restoration Ecology, 2015. 23(3): p. 201-208.
- 552 36. Dickman, C.R., A.S. Glen, and M. Letnic, *Reintroducing the dingo: can Australia's*553 *conservation wastelands be restored*. Reintroduction of top-order predators, 2009.
- **238**: p. 269.
- 555 37. Letnic, M., et al., Does a top predator suppress the abundance of an invasive
- *mesopredator at a continental scale*? Global Ecology and Biogeography, 2011. 20(2):
  p. 343-353.
- 558 38. Spencer, E. and T. Newsome, *Dingoes dining with death*. Australian Zoologist, 2021.
- 39. Wirsing, A.J. and T.M. Newsome, *Scavenging Effects of Large Canids*. Integrative
  and Comparative Biology, 2021.
- 561 40. Forsyth, D.M., et al., *How does a carnivore guild utilise a substantial but*
- 562 *unpredictable anthropogenic food source? Scavenging on hunter-shot ungulate*
- 563 carcasses by wild dogs/dingoes, red foxes and feral cats in south-eastern Australia
- 564 *revealed by camera traps.* PLoS One, 2014. **9**(6): p. e97937.

- Allen, B.L., *Skin and bone: observations of dingo scavenging during a chronic food shortage*. Australian Mammalogy, 2010. 32(2): p. 207-208.
- Meek, P. and S. Brown, *It's a dog eat dog world: observations of dingo (Canis familiaris) cannibalism*. Australian Mammalogy, 2016. **39**(1): p. 92-94.
- 569 43. Behrendorff, L., L.K.-P. Leung, and B.L. Allen, *Utilisation of stranded marine fauna*
- 570 washed ashore on K'gari (Fraser Island), Australia, by dingoes. Australian Journal of
  571 Zoology, 2018. 66(2): p. 128-138.
- 572 44. Schlacher, T.A., et al., *Conservation gone to the dogs: when canids rule the beach in*573 *small coastal reserves.* Biodiversity and Conservation, 2015. 24(3): p. 493-509.
- 574 45. Letnic, M. and F. Koch, Are dingoes a trophic regulator in arid Australia? A
- 575 *comparison of mammal communities on either side of the dingo fence.* Austral

576 Ecology, 2010. **35**(2): p. 167-175.

- 577 46. Laundré, J.W., L. Hernández, and K.B. Altendorf, Wolves, elk, and bison:
- 578 reestablishing the" landscape of fear" in Yellowstone National Park, USA. Canadian
  579 Journal of Zoology, 2001. 79(8): p. 1401-1409.
- 580 47. Bear, R., W. Hill, and C.M. Pickering, Distribution and diversity of exotic plant
- 581 species in montane to alpine areas of Kosciuszko National Park. Cunninghamia,
- 582 2006. **9**(4): p. 559-570.
- 583 48. Newsome, T.M. and E.E. Spencer, *Megafires attract avian scavenging but carcasses*584 *still persist.* Diversity and Distributions, 2021.
- 585 49. Spencer, E.E., et al., *Carcasses attract invasive species and increase artificial nest*586 *predation in a desert environment.* Global Ecology and Conservation, 2021. 27: p.
  587 e01588.
- 588 50. Inagaki, A., et al., *Vertebrate scavenger guild composition and utilization of carrion*589 *in an East Asian temperate forest.* Ecology and evolution, 2020. 10(3): p. 1223-1232.

- 590 51. Flint, P.L., et al., *Estimating carcass persistence and scavenging bias in a human-*591 *influenced landscape in western Alaska*. Journal of Field Ornithology, 2010. 81(2): p.
  592 206-214.
- 593 52. King, N.J., P.M. Bagley, and I.G. Priede, *Depth zonation and latitudinal distribution*594 of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42 to 53 N. Marine
- 595 Ecology Progress Series, 2006. **319**: p. 263-274.
- 596 53. Rød-Eriksen, L., et al., *Highways associated with expansion of boreal scavengers into*597 *the alpine tundra of Fennoscandia*. Journal of Applied Ecology, 2020. 57(9): p. 1861598 1870.
- 599 54. Kostecke, R., G. Linz, and W. Bleier, *Survival Of Avian Carcasses And Photographic*600 *Evidence Of Predators And Scavengers*. Journal of Field Ornithology, 2001. 72(3): p.
  601 439-447.
- 602 55. Bates, D., et al., *Fitting linear mixed-effects models using lme4*. arXiv preprint
  603 arXiv:1406.5823, 2014.
- 56. Wood, S. and M.S. Wood, *Package 'mgcv'*. R package version, 2015. 1: p. 29.
- 605 57. Sakamoto, Y., M. Ishiguro, and G. Kitagawa, Akaike information criterion statistics.
- 606 Dordrecht, The Netherlands: D. Reidel, 1986. **81**(10.5555): p. 26853.
- 607 58. Bates, D., et al., *Package 'lme4'*. Version, 2018. 1(17): p. 437.
- 59. Lenth, R. and M.R. Lenth, *Package 'Ismeans'*. The American Statistician, 2018.
  34(4): p. 216-221.
- 610 60. Newsome, T.M., et al., *Top predators constrain mesopredator distributions*. Nature
  611 communications, 2017. 8(1): p. 1-7.
- 612 61. Brawata, R.L., Does management of a top carnivore influence the response of
- 613 *mesopredators and prey to rainfall in arid ecosystems? Evidence for a Baseline*
- 614 *Density theory*. Australian Zoologist, 2021.

- 615 62. Kratina, P., et al., *Functional responses modified by predator density*. Oecologia,
  616 2009. 159(2): p. 425-433.
- 617 63. Griffen, B.D. and T. Williamson, *Influence of predator density on nonindependent*618 *effects of multiple predator species*. Oecologia, 2008. **155**(1): p. 151-159.
- 619 64. Vucetich, J.A., R.O. Peterson, and C.L. Schaefer, *The effect of prey and predator*620 *densities on wolf predation*. Ecology, 2002. 83(11): p. 3003-3013.
- 621 65. Mchich, R., P. Auger, and J.-C. Poggiale, *Effect of predator density dependent*622 *dispersal of prey on stability of a predator-prey system.* Mathematical Biosciences,
- 623 2007. **206**(2): p. 343-356.
- 624 66. Graham, K., A.P. Beckerman, and S. Thirgood, *Human–predator–prey conflicts:*625 *ecological correlates, prey losses and patterns of management.* Biological
  626 conservation, 2005. 122(2): p. 159-171.
- 627 67. Gabriele-Rivet, V., et al., *Dingo density estimates and movements in equatorial*628 *Australia: Spatially explicit mark–resight models*. Animals, 2020. 10(5): p. 865.
- 629 68. Allen, L., R. Engeman, and H. Krupa, *Evaluation of three relative abundance indices*630 *for assessing dingo populations*. Wildlife Research, 1996. 23(2): p. 197-205.
- 631 69. Kennedy, M., et al., *Responses of dingo (Canis familiaris) populations to landscape-*632 *scale baiting.* Food Webs, 2021. 27: p. e00195.
- 633 70. McIlroy, J., et al., *The Effect on Wild Dogs, Canis-F-Familiaris, of 1080-Poisoning*
- 634 *Campaigns in Kosciusko-National-Park, Nsw.* Wildlife Research, 1986. 13(4): p. 535635 544.
- 636 71. Hunt, R. *Pre baiting using a synthetic scent to increase point of control investigations*
- 637 *by foxes (Vulpes vulpes) and wild dogs (Canis lupis dingo/Canis lupis familiaris).* in
- 638 Proceedings of the Third NSW Pest Animal Control Conference, Coffs Harbour,
- 639 *NSW*. 2005.

- 640 72. Bomford, M., *Managing the impacts of dingoes and other wild dogs*. 2001: Bureau of
- 641 Rural Sciences.

# **Chapter 3 – Supplementary Material**

**Table 1.** The Akaike information criterion (AIC) ranking of each of the models for dingo scavenging activity. Parsimoniously competitive models ( $\Delta AICc < 2.00$ ) are denoted in *italics*.

| No. | Model                 | df | logLik  | AICc  | ΔAICc | weight |
|-----|-----------------------|----|---------|-------|-------|--------|
| 1   | Season                | 5  | -63.883 | 136.4 | 0.00  | 0.511  |
| 2   | Null (intercept only) | 2  | -66.178 | 136.5 | 0.09  | 0.489  |

| Variables | Estimate | Std. error | t value | р     |
|-----------|----------|------------|---------|-------|
| Intercept | -1.109   | 0.812      | -1.366  | 0.172 |
| Spring    | 1.292    | 0.896      | 1.442   | 0.149 |
| Summer    | -0.713   | 0.996      | -0.716  | 0.474 |
| Winter    | -18.463  | 1024.000   | -0.018  | 0.986 |

**Table 2.** The base generalised linear model (GLM) for dingo scavenging activity.

| Contrast        | estimate | SE       | df  | z.ratio | p.value |
|-----------------|----------|----------|-----|---------|---------|
| Autumn - Spring | -1.292   | 0.896    | Inf | -1.442  | 0.473   |
| Autumn - Summer | 0.713    | 0.996    | Inf | 0.716   | 0.891   |
| Autumn - Winter | 18.463   | 1024.000 | Inf | 0.018   | 1.000   |
| Spring - Summer | 2.005    | 0.885    | Inf | 2.265   | 0.106   |
| Spring - Winter | 19.755   | 1024.000 | Inf | 0.019   | 1.000   |
| Summer - Winter | 17.750   | 1024.001 | Inf | 0.017   | 1.000   |

**Table 3.** The Tukey's honest significance test of the base generalised linear model (GLM) for

 dingo scavenging activity.

**Table 4.** The Akaike information criterion (AIC) ranking of each of the models for dingo investigation event duration (top) and scavenging event duration (bottom). Parsimoniously competitive models ( $\Delta$ AICc < 2.00) are denoted in *italics*.

| No. | Model                 | df       | logLik       | AICc  | ΔAICc | weight |
|-----|-----------------------|----------|--------------|-------|-------|--------|
|     | Inves                 | tigation | Event Durat  | ion   |       |        |
| 1   | Null (intercept only) | 3        | -63.880      | 134.2 | 0.00  | 0.852  |
| 2   | Season                | 6        | -62.051      | 137.7 | 3.5   | 0.148  |
|     | Scav                  | enging   | Event Durati | on    |       |        |
| 1   | Null (intercept only) | 3        | -144.141     | 294.9 | 0.00  | 0.922  |
| 2   | Season                | 5        | -144.104     | 299.8 | 4.93  | 0.078  |

| Variables                    | Estimate Std. error |               | t value | р     |  |  |  |  |  |  |
|------------------------------|---------------------|---------------|---------|-------|--|--|--|--|--|--|
| Investigation Event Duration |                     |               |         |       |  |  |  |  |  |  |
| Intercept                    | 0.156               | 0.450         | 1.146   | 0.252 |  |  |  |  |  |  |
| Spring                       | -0.624              | 0.527         | -1.184  | 0.236 |  |  |  |  |  |  |
| Summer                       | 0.102               | 0.543         | 0.188   | 0.851 |  |  |  |  |  |  |
| Winter                       | -1.144              | 1.493         | -0.767  | 0.443 |  |  |  |  |  |  |
|                              | Scavenging          | Event Duratio | on      |       |  |  |  |  |  |  |
| Intercept                    | 2.340               | 0.833         | 2.808   | 0.005 |  |  |  |  |  |  |
| Spring                       | -0.209              | 0.905         | -0.231  | 0.818 |  |  |  |  |  |  |
| Summer                       | -0.065              | 1.076         | -0.061  | 0.952 |  |  |  |  |  |  |

**Table 5.** The base generalised linear model (GLM) for dingo investigation event duration (top)and scavenging event duration (bottom). Significant p-values (p < 0.05) are denoted in **bold**.

**Table 6.** The Tukey's honest significance test of the base generalised linear model (GLM) for dingo investigation event duration (top) and scavenging event duration (bottom). There are no comparisons of dingo scavenging event duration (bottom) during winter because dingoes were not recorded to have scavenged during the winter monitoring period.

| Contrast                     | estimate   | SE        | df    | z.ratio | p.value |  |  |  |  |  |  |
|------------------------------|------------|-----------|-------|---------|---------|--|--|--|--|--|--|
| Investigation Event Duration |            |           |       |         |         |  |  |  |  |  |  |
| Autumn - Spring              | 0.624      | 0.527     | Inf   | 1.184   | 0.637   |  |  |  |  |  |  |
| Autumn - Summer              | -0.102     | 0.543     | Inf   | -0.188  | 0.998   |  |  |  |  |  |  |
| Autumn - Winter              | 1.144      | 1.493     | Inf   | 0.767   | 0.870   |  |  |  |  |  |  |
| Spring - Summer              | -0.726     | 0.409     | Inf   | -1.776  | 0.285   |  |  |  |  |  |  |
| Spring - Winter              | 0.521      | 1.450     | Inf   | 0.359   | 0.984   |  |  |  |  |  |  |
| Summer - Winter              | 1.247      | 1.456     | Inf   | 0.857   | 0.827   |  |  |  |  |  |  |
|                              | Scavenging | Event Dur | ation |         |         |  |  |  |  |  |  |
| Autumn - Spring              | 0.209      | 0.905     | Inf   | 0.231   | 0.971   |  |  |  |  |  |  |
| Autumn - Summer              | 0.065      | 1.076     | Inf   | 0.061   | 0.998   |  |  |  |  |  |  |
| Spring - Summer              | -0.144     | 0.768     | Inf   | -0.187  | 0.981   |  |  |  |  |  |  |

**Table 7.** The Akaike information criterion (AIC) ranking of each of the models for brushtail possum scavenging activity. Parsimoniously competitive models ( $\Delta$ AICc < 2.00) are denoted in *italics*.

| No. | Model                    | df | logLik    | AICc   | ΔAICc | weight |
|-----|--------------------------|----|-----------|--------|-------|--------|
| 1   | Season                   | 5  | -2537.660 | 5085.3 | 0.00  | 0.574  |
| 2   | Seasons + Dingo Presence | 6  | -2537.024 | 5086.1 | 0.73  | 0.398  |
| 3   | Null (intercept only)    | 2  | -2544.019 | 5092.0 | 6.71  | 0.020  |
| 4   | Dingo Presence           | 3  | -2543.986 | 5094.0 | 8.64  | 0.008  |

| Table 8.  | The base   | generalised   | linear m | odel (Gl         | LM) for | brushtail | possum | scavenging | activity. |
|-----------|------------|---------------|----------|------------------|---------|-----------|--------|------------|-----------|
| Significa | nt p-value | es (p < 0.05) | are denc | oted in <b>b</b> | old.    |           |        |            |           |

| Variables      | Estimate | Std. error | t value | р       |
|----------------|----------|------------|---------|---------|
| Intercept      | -2.224   | 0.548      | -4.060  | < 0.001 |
| Spring         | 0.477    | 0.633      | 0.754   | 0.451   |
| Summer         | 0.338    | 0.653      | 0.518   | 0.604   |
| Winter         | 2.288    | 0.663      | 3.448   | 0.001   |
| Dingo Presence | -0.559   | 0.499      | -1.120  | 0.263   |

| Contrast        | estimate | SE    | df  | z.ratio | p.value |
|-----------------|----------|-------|-----|---------|---------|
| Autumn - Spring | -0.477   | 0.634 | Inf | -0.753  | 0.876   |
| Autumn - Summer | -0.338   | 0.654 | Inf | -0.517  | 0.955   |
| Autumn - Winter | -2.288   | 0.665 | Inf | -3.442  | 0.003   |
| Spring - Summer | 0.139    | 0.638 | Inf | 0.218   | 0.996   |
| Spring - Winter | -1.811   | 0.638 | Inf | -2.839  | 0.023   |
| Summer - Winter | -1.950   | 0.658 | Inf | -2.965  | 0.016   |

**Table 9.** The Tukey's honest significance test of the base generalised linear model (GLM) forbrushtail possum scavenging activity. Significant p-values (p < 0.05) are denoted in **bold**.

**Table 10.** The Akaike information criterion (AIC) ranking of each of the models for brushtail possum investigation event duration (top) and scavenging event duration (bottom). Parsimoniously competitive models ( $\Delta AICc < 2.00$ ) are denoted in *italics*.

| Model                        | df                                                                                                                                                                                                   | logLik                                                                                                                                                                                             | AICc                                                                                                                                                                                                                                                                                                | ΔAICc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | weight                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Investigation Event Duration |                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Null (intercept only)        | 3                                                                                                                                                                                                    | -1947.434                                                                                                                                                                                          | 3900.9                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.404                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Dingo Presence               | 4                                                                                                                                                                                                    | -1946.703                                                                                                                                                                                          | 3901.4                                                                                                                                                                                                                                                                                              | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.308                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Season + Dingo Presence      | 7                                                                                                                                                                                                    | -1944.191                                                                                                                                                                                          | 3902.4                                                                                                                                                                                                                                                                                              | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.186                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Seasons                      |                                                                                                                                                                                                      | -1945.792                                                                                                                                                                                          | 3903.6                                                                                                                                                                                                                                                                                              | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.102                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Scave                        | ngin                                                                                                                                                                                                 | g Event Durat                                                                                                                                                                                      | tion                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Null (intercept only)        | 3                                                                                                                                                                                                    | -6686.760                                                                                                                                                                                          | 13379.5                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.555                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Dingo Presence               | 4                                                                                                                                                                                                    | -6686.199                                                                                                                                                                                          | 13380.4                                                                                                                                                                                                                                                                                             | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.356                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Season                       | 6                                                                                                                                                                                                    | -6685.953                                                                                                                                                                                          | 13383.9                                                                                                                                                                                                                                                                                             | 4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.061                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Seasons + Dingo Presence     | 7                                                                                                                                                                                                    | -6685.714                                                                                                                                                                                          | 13385.5                                                                                                                                                                                                                                                                                             | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.028                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                              | Model<br>Investi<br>Null (intercept only)<br>Dingo Presence<br>Season + Dingo Presence<br>Seasons<br>Scave<br>Null (intercept only)<br>Dingo Presence<br>Season<br>Season<br>Season + Dingo Presence | ModeldfInvestigationNull (intercept only)Jingo PresenceJingo PresenceSeason + Dingo PresenceSeasons6ScavenginNull (intercept only)3Dingo PresenceASeasonOnigo PresenceASeasonSeason6Season6Season7 | ModeldflogLikInvestigation Event DuraNull (intercept only)3-1947.434Dingo Presence4-1946.703Season + Dingo Presence7-1944.191Seasons6-1945.792Scavenging Event DuratScavenging Event DuratNull (intercept only)3-6686.760Dingo Presence4-6686.199Season6-6685.953Seasons + Dingo Presence7-6685.714 | Model         df         logLik         AICc           Investigation Event Duration         Investigation Event Duration         3900.9           Null (intercept only)         3         -1947.434         3900.9           Dingo Presence         4         -1946.703         3901.4           Season + Dingo Presence         7         -1944.191         3902.4           Seasons         6         -1945.792         3903.6           Seasons         6         -1945.792         3903.6           Scavenging Event Duration         3         -6686.760         13379.5           Dingo Presence         4         -6686.199         13380.4           Season         6         -6685.953         13383.9           Seasons + Dingo Presence         7         -6685.714         13385.5 | ModeldflogLikAICcΔAICcInvestigationEvent DurationNull (intercept only)3-1947.4343900.90.00Dingo Presence4-1946.7033901.40.55Season + Dingo Presence7-1944.1913902.41.56Seasons6-1945.7923903.62.75ScaversingEvent Duration3-6686.76013379.50.00Dingo Presence4-6686.19913380.40.89Season6-6685.95313383.94.41Seasons + Dingo Presence7-6685.71413385.55.95 |  |  |  |  |  |  |

| Table 11. The base generalised linear model (GLM) for brushtail possum investigation event     |
|------------------------------------------------------------------------------------------------|
| duration (top) and scavenging event duration (bottom). Significant p-values ( $p < 0.05$ ) are |
| denoted in <b>bold</b> .                                                                       |

| Investigation<br>-0.557 | Event Durati<br>0.246                                                                         | on                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.557                  | 0.246                                                                                         | 2 2 (1                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |
|                         |                                                                                               | -2.261                                                                                                                                                                                                                                      | 0.024                                                                                                                                                                                                                                                                                                                                         |
| 0.028                   | 0.313                                                                                         | 0.090                                                                                                                                                                                                                                       | 0.928                                                                                                                                                                                                                                                                                                                                         |
| 0.421                   | 0.322                                                                                         | 1.309                                                                                                                                                                                                                                       | 0.191                                                                                                                                                                                                                                                                                                                                         |
| 0.617                   | 0.322                                                                                         | 1.917                                                                                                                                                                                                                                       | 0.055                                                                                                                                                                                                                                                                                                                                         |
| 0.451                   | 0.249                                                                                         | 1.809                                                                                                                                                                                                                                       | 0.070                                                                                                                                                                                                                                                                                                                                         |
| Scavenging              | Event Duratio                                                                                 | on                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                               |
| 1.996                   | 0.383                                                                                         | 5.209                                                                                                                                                                                                                                       | < 0.00                                                                                                                                                                                                                                                                                                                                        |
| -0.124                  | 0.402                                                                                         | -0.309                                                                                                                                                                                                                                      | 0.757                                                                                                                                                                                                                                                                                                                                         |
| 0.196                   | 0.414                                                                                         | 0.474                                                                                                                                                                                                                                       | 0.635                                                                                                                                                                                                                                                                                                                                         |
| 0.156                   | 0.418                                                                                         | 0.374                                                                                                                                                                                                                                       | 0.709                                                                                                                                                                                                                                                                                                                                         |
| -0.210                  | 0.304                                                                                         | -0.690                                                                                                                                                                                                                                      | 0.490                                                                                                                                                                                                                                                                                                                                         |
|                         | 0.028<br>0.421<br>0.617<br>0.451<br>Scavenging<br>1.996<br>-0.124<br>0.196<br>0.156<br>-0.210 | 0.421       0.322         0.617       0.322         0.451       0.249         Scavenging Event Duration         1.996       0.383         -0.124       0.402         0.196       0.414         0.156       0.418         -0.210       0.304 | 0.421       0.322       1.309         0.617       0.322       1.917         0.451       0.249       1.809         Scavenging Event Duration         1.996       0.383       5.209         -0.124       0.402       -0.309         0.196       0.414       0.474         0.156       0.418       0.374         -0.210       0.304       -0.690 |

| Contrast                     | estimate   | SE        | df    | z.ratio | p.value |  |  |  |
|------------------------------|------------|-----------|-------|---------|---------|--|--|--|
| Investigation Event Duration |            |           |       |         |         |  |  |  |
| Autumn - Spring              | -0.028     | 0.313     | Inf   | -0.090  | 1.000   |  |  |  |
| Autumn - Summer              | -0.421     | 0.322     | Inf   | -1.309  | 0.557   |  |  |  |
| Autumn - Winter              | -0.617     | 0.322     | Inf   | -1.917  | 0.221   |  |  |  |
| Spring - Summer              | -0.393     | 0.324     | Inf   | -1.213  | 0.618   |  |  |  |
| Spring - Winter              | -0.589     | 0.328     | Inf   | -1.796  | 0.275   |  |  |  |
| Summer - Winter              | -0.196     | 0.336     | Inf   | -0.584  | 0.937   |  |  |  |
|                              | Scavenging | Event Dur | ation |         |         |  |  |  |
| Autumn - Spring              | 0.124      | 0.402     | Inf   | 0.309   | 0.990   |  |  |  |
| Autumn - Summer              | -0.196     | 0.414     | Inf   | -0.474  | 0.965   |  |  |  |
| Autumn - Winter              | -0.156     | 0.418     | Inf   | -0.374  | 0.982   |  |  |  |
| Spring - Summer              | -0.320     | 0.371     | Inf   | -0.865  | 0.823   |  |  |  |
| Spring - Winter              | -0.280     | 0.339     | Inf   | -0.828  | 0.841   |  |  |  |
| Summer - Winter              | 0.040      | 0.355     | Inf   | 0.113   | 1.000   |  |  |  |

**Table 12.** The Tukey's honest significance test of the base generalised linear model (GLM) forbrushtail possum investigation event duration (top) and scavenging event duration (bottom).

| No. | Model                    | df | logLik   | AICc   | ΔAICc | weight |
|-----|--------------------------|----|----------|--------|-------|--------|
| 1   | Null (intercept only)    | 2  | -794.862 | 1593.7 | 0.00  | 0.328  |
| 2   | Dingo Presence           | 3  | -793.909 | 1593.8 | 0.10  | 0.312  |
| 3   | Season                   | 5  | -792.423 | 1594.9 | 1.15  | 0.185  |
| 4   | Seasons + Dingo Presence | 6  | -791.476 | 1595.0 | 1.27  | 0.174  |

**Table 13.** The Akaike information criterion (AIC) ranking of each of the models for raven spp.scavenging activity. Parsimoniously competitive models ( $\Delta AICc < 2.00$ ) are denoted in *italics*.

| Variables      | Estimate | Std. error | t value | р       |
|----------------|----------|------------|---------|---------|
| Intercept      | 1.820    | 0.307      | 5.934   | < 0.001 |
| Spring         | -0.099   | 0.337      | -0.295  | 0.768   |
| Summer         | -0.865   | 0.428      | -2.021  | 0.043   |
| Winter         | -0.100   | 0.407      | -0.246  | 0.805   |
| Dingo Presence | 0.405    | 0.287      | 1.410   | 0.158   |

**Table 14.** The base generalised linear model (GLM) for raven spp. scavenging activity.Significant p-values (p < 0.05) are denoted in **bold**.

| Contrast        | estimate | SE    | df  | z.ratio | p.value |
|-----------------|----------|-------|-----|---------|---------|
| Autumn - Spring | 0.099    | 0.337 | Inf | 0.295   | 0.991   |
| Autumn - Summer | 0.865    | 0.428 | Inf | 2.021   | 0.180   |
| Autumn - Winter | 0.100    | 0.407 | Inf | 0.246   | 0.995   |
| Spring - Summer | 0.766    | 0.384 | Inf | 1.993   | 0.190   |
| Spring - Winter | 0.001    | 0.362 | Inf | 0.003   | 1.000   |
| Summer - Winter | -0.765   | 0.444 | Inf | -1.722  | 0.312   |

**Table 15.** The Tukey's honest significance test of the base generalised linear model (GLM) for

 raven spp. scavenging activity.

**Table 16.** The Akaike information criterion (AIC) ranking of each of the models for raven spp. investigation event duration (top) and scavenging event duration (bottom). Parsimoniously competitive models ( $\Delta$ AICc < 2.00) are denoted in *italics*.

| No. | Model                        | df | logLik    | AICc    | ΔAICc | weight |  |  |  |
|-----|------------------------------|----|-----------|---------|-------|--------|--|--|--|
|     | Investigation Event Duration |    |           |         |       |        |  |  |  |
| 1   | Null (intercept only)        | 3  | -267.151  | 540.4   | 0.00  | 0.534  |  |  |  |
| 2   | Dingo Presence               | 4  | -267.083  | 542.3   | 1.92  | 0.205  |  |  |  |
| 3   | Season                       | 6  | -265.077  | 542.4   | 2.06  | 0.190  |  |  |  |
| 4   | Seasons + Dingo Presence     | 7  | -265.010  | 544.4   | 4.03  | 0.071  |  |  |  |
|     | Scavenging Event Duration    |    |           |         |       |        |  |  |  |
| 1   | Season                       | 6  | -5152.495 | 10317.0 | 0.00  | 0.726  |  |  |  |
| 2   | Season + Dingo Presence      | 7  | -5152.484 | 10319.0 | 2.00  | 0.267  |  |  |  |
| 3   | Null (intercept only)        | 3  | -5160.473 | 10327.0 | 9.92  | 0.005  |  |  |  |
| 4   | Dingo Presence               | 4  | -5160.447 | 10328.9 | 11.88 | 0.002  |  |  |  |

**Table 17.** The base generalised linear model (GLM) for raven spp. investigation event duration(top) and scavenging event duration (bottom). Significant p-values (p < 0.05) are denoted in**bold**.

| Variables                    | Estimate   | Std. error     | t value | P       |  |  |  |  |
|------------------------------|------------|----------------|---------|---------|--|--|--|--|
| Investigation Event Duration |            |                |         |         |  |  |  |  |
| Intercept                    | 0.456      | 0.354          | 1.287   | 0.198   |  |  |  |  |
| Spring                       | -0.246     | 0.351          | -0.702  | 0.483   |  |  |  |  |
| Summer                       | 0.156      | 0.456          | 0.341   | 0.733   |  |  |  |  |
| Winter                       | -0.733     | 0.435          | -1.683  | 0.092   |  |  |  |  |
| Dingo Presence               | -0.106     | 0.286          | -0.370  | 0.711   |  |  |  |  |
|                              | Scavenging | g Event Durati | on      |         |  |  |  |  |
| Intercept                    | 0.065      | 0.013          | 4.954   | < 0.001 |  |  |  |  |
| Spring                       | 0.064      | 0.015          | 4.312   | < 0.001 |  |  |  |  |
| Summer                       | 0.015      | 0.018          | 0.833   | 0.405   |  |  |  |  |
| Winter                       | 0.022      | 0.017          | 1.247   | 0.212   |  |  |  |  |
| Dingo Presence               | 0.002      | 0.013          | 0.144   | 0.886   |  |  |  |  |

**Table 18.** The Tukey's honest significance test of the base generalised linear model (GLM) forraven spp. investigation event duration (top) and scavenging event duration (bottom).Significant p-values (p < 0.05) are denoted in **bold**.

| Contrast                     | estimate   | SE        | df    | z.ratio | p.value |  |  |  |
|------------------------------|------------|-----------|-------|---------|---------|--|--|--|
| Investigation Event Duration |            |           |       |         |         |  |  |  |
| Autumn - Spring              | 0.246      | 0.351     | Inf   | 0.702   | 0.897   |  |  |  |
| Autumn - Summer              | -0.155     | 0.456     | Inf   | -0.341  | 0.986   |  |  |  |
| Autumn - Winter              | 0.733      | 0.435     | Inf   | 1.683   | 0.333   |  |  |  |
| Spring - Summer              | -0.402     | 0.397     | Inf   | -1.011  | 0.743   |  |  |  |
| Spring - Winter              | 0.487      | 0.371     | Inf   | 1.312   | 0.555   |  |  |  |
| Summer - Winter              | 0.888      | 0.467     | Inf   | 1.901   | 0.228   |  |  |  |
|                              | Scavenging | Event Dur | ation |         |         |  |  |  |
| Autumn - Spring              | -0.064     | 0.015     | Inf   | -4.312  | < 0.001 |  |  |  |
| Autumn - Summer              | -0.015     | 0.018     | Inf   | -0.833  | 0.839   |  |  |  |
| Autumn - Winter              | -0.022     | 0.017     | Inf   | -1.247  | 0.597   |  |  |  |
| Spring - Summer              | 0.049      | 0.018     | Inf   | 2.768   | 0.029   |  |  |  |
| Spring - Winter              | 0.042      | 0.017     | Inf   | 2.548   | 0.053   |  |  |  |
| Summer - Winter              | -0.006     | 0.019     | Inf   | -0.333  | 0.987   |  |  |  |

# **1** Chapter 4 – Conclusion and future directions

## 2 Conclusion

3 The Australian Alps is a unique system where the dynamics of the scavenging guild are 4 dominated by mesoscavengers despite the presence of an apex predator. As expected, 5 scavenging was seasonal but was ultimately dictated by the seasonality in the scavenging 6 activities of the brushtail possum and raven spp. (mesoscavengers). The time to first detection 7 of carcasses was significantly longer during summer and refuted the hypothesis that olfactory 8 cues (signals greatest during warmer months [1]) increase carcass detectability by vertebrate 9 scavengers during summer. A few theories may explain this, the least speculative of which 10 regards the brushtail possums and raven spp. abilities to rapidly detect carcasses. During 11 autumn, winter, and spring, 93% of the first detections of a carcass were by either brushtail 12 possums or raven spp., but during summer they only accounted for 57%. This reduction in 13 search effort by the brushtail possum and raven spp. during summer, when there is likely an 14 abundance of other available food sources [2-4], may have alone increased the time to first 15 detection of carcasses for the collective scavenger guild. Increased invertebrate scavenging 16 rates during summer have been demonstrated to accelerate carcass decomposition, and in some 17 cases even outcompete vertebrate scavengers' contribution to carrion biomass loss [5-7]. This 18 may also explain why the time to first detection of carcasses was so long during summer as 19 detection by vertebrates becomes increasingly difficult during the later stages of 20 decomposition, and indeed less attractive [8, 9].

Collectively, the scavenger guild was significantly more likely to scavenge than investigate carcasses during both spring and winter. For spring, this was driven by the raven spp. breeding season, during which it was inferred that raven spp. became highly dependent on carcasses to meet increased energetic requirements, as well as for nest construction (i.e., hair/fur), and 25 feeding chicks [10, 11]. The highly frequent but brief raven spp. scavenging events associated 26 with the raven spp. breeding season i.e., frequent trips back and forth between the nest and 27 resources [10], also potentially resulted in significantly shorter scavenging events during spring 28 for the collective scavenger guild. With regards to winter, increased rates of scavenging vs 29 investigation of carcasses were consistent with results observed globally, especially so in 30 northern hemisphere systems, where rates of scavenging increase during winter in response to 31 a lack of other available food sources [2-4]. However, here, this winter-time trend was 32 completely dominated by an increase in the scavenging rates of brushtail possums which 33 scavenged three times more often than during summer and accounted for 81% of all recorded 34 events during winter. The rates of scavenging observed by possums during winter, and indeed 35 during all seasons, provide evidence for considerable carnivory in the brushtail possum.

36 Despite the presence of the dingo, a dominant scavenging predator [12-15], within the Australia 37 alpine scavenger guild, the scavenging rates, and behaviours of the brushtail possum and raven 38 spp. were unaffected. Together the results of this study demonstrate a seasonal dynamic in the 39 Australian Alps where scavenging is dominated by low ranking mesoscavengers in the notable 40 absence of the dominant scavenging predator. With this in mind, a conceptual framework can 41 be developed, which is of continental significance in Australia given that brushtail possums are 42 the most widespread Australian marsupial and that both raven spp. are also relatively abundant 43 throughout southern-east Australia. Here, autumn represents a relative 'norm', where 44 scavenging is not completely dominated by the brushtail possum and raven spp.. Notably, the 45 highest rates of scavenging were also recorded for many of the other scavenger's species during 46 autumn. Summer recorded the least amount of scavenging for the collective scavenger guild, 47 especially so regarding brushtail possums and raven spp., and this was likely due to an 48 abundance of other available food sources. Winter was completely dominated by a profound 49 increase in the scavenging activities of brushtail possums as they supplemented their diet in the
absence of other available food sources. Finally, the scavenging dynamics of spring were best explained by its overlap with the raven spp. breeding season which resulted in just over 1000 frequent but short raven spp. scavenging events. Additionally, dingo scavenging peaked during spring but had no effect on the scavenging of either raven spp. or brushtail possums (Figure 1).



Figure 1. Conceptual diagram indicating the proportion (i.e., size of wedge) of total scavenging events attributed to each season (yellow/top = summer, blue/right = winter, orange/bottom = autumn, and green/left = spring. Within each season wedge the scavenging dynamics of the three dominant mesoscavengers (brushtail possum and raven spp.), as well as other minor scavengers, are shown, where the relative size of the arrow is indicative of interaction strength.

## 59 Future directions

Foremost, this study exemplifies the importance of the seasons to ecological processes linked to scavenging. The direction in which seasonal effects impacted scavenging was not always as predicted. These unexpected influences highlight the need for seasonally replicated experimental approaches in field-based scavenging research. This was a primary motivation for undertaking this study as it was obvious that much of the literature describing scavenging ecology in the field inadequately accounted for seasonal effects, underestimating their potential to shape ecosystem scavenging dynamics.

In general, the methods used herein can be utilised to monitor scavenging dynamics 67 68 surrounding carrion within any given ecosystem globally, and even be further developed to 69 improve field-based designs and yield additional ecological information. Such improvements 70 could include utilising an increased altitudinal gradient that may detect elevational differences 71 in scavenging dynamics missed by this study given the small altitudinal gradient used (500m). 72 This is especially important in scavenging studies elsewhere globally that experience much 73 higher altitudes that those present in Australia. Increased sampling, including through the use 74 of multiple transects, along with repicated studies over multiple years may also help to account for within site and annual variability [16]. 75

A limiting factor of this study was the absence of measures for carrion biomass loss, and thus, species-specific contributions to biomass loss through scavenging were not estimated. Such findings would have been particularly interesting here given that the contributions of the brushtail possums and raven spp. to biomass loss may have been minimal when compared to larger scavengers (e.g., dingo, feral pig, wedge-tail eagle) capable of consuming greater quantities of carrion, despite scavenging less frequently. This means there is considerable scope to further our understanding of species-specific scavenging dynamics within the Australian Alps by assessing the contributions of different scavengers to carrion persistence within thelandscape.

85 Overall, the widescale carnivory of brushtail possums observed in this study is highly novel given that brushtail possums are commonly considered generalist herbivores/folivores [17-21]. 86 87 Whilst brushtail possums have been known to on occasion predate insects, depredate birds' 88 nests, and scavenge on carrion [22, 23], generally their diet is known to consist of leaves, 89 flowers, and fruit (commonly Eucalyptus and Acacia species) [17, 21, 24]. In light of the 90 findings here and their commonly cited dietary classifications, it is recommended that further 91 dietary studies of the brushtail possum are undertaken which may potentially results in the 92 reclassification of their dietary status. An experimental study that utilises scat analyses, a 93 commonly used method in the literature [17, 24], could be particularly insightful here. Such an 94 approach could compare the diets of brushtail possums (determined by scat analyses) that have 95 access to carrion (experimentally placed carcasses) vs those that do not, and this may determine 96 the extent to which carrion can supplement or even substitute other common food sources.

97 Seemingly, the raven spp. within the Australian Alps were somewhat dependent on carrion as 98 both a source of energy and nesting material during the breeding season. Very little work has 99 been done to determine how carrion biomass within an ecosystem (year to year) may affect the 100 breeding success of facultative scavengers [7]. This is an area that demands future attention 101 given the results of this study and also those elsewhere regarding raven spp. [10]. A similar 102 approach to that discussed above regarding brushtail possums (i.e., access vs exclusion to 103 carrion) could also be utilised here for comparisons of raven spp. breeding success across 104 multiple breeding seasons.

Of global relevance is the seemingly low rates of dingo scavenging in the Australian Alps and the consequential lack of top-down scavenging effects exerted by an apex predator surrounding carrion. This raises several questions regarding how dominant scavenging predators affect 108 scavenging dynamics under different scenarios. For this reason, specifically, there is a need for 109 simultaneous comparisons of scavenging effects exerted by dominant scavenging predators in 110 ecosystems where the predators are not subject to control vs ecosystems where predators are 111 anthropogenically controlled or are already extirpated. Such comparisons would be highly 112 valuable globally given the unique and varying circumstances under which apex predators 113 exists. These findings would also assist in determining whether the lack of scavenging and 114 scavenging effects by the dingo in the Australian Alps, is unique, or part of a more global trend, 115 where the abilities of apex predators to control and regulate food web dynamics within 116 ecosystems are being negatively impacted by anthropogenic activities [25-30].

117 The density dependent predator theories that were likely important to the lack of top-down 118 scavenging effects exerted by dingoes in this study, provide a strong foundation for such 119 comparative predator studies recommended above [31, 32]. Indeed, such studies have already 120 been undertaken in Tasmania where a reduction in the density of Tasmanian devils resulted in 121 a mesoscavenger release of forest ravens and feral cats [33, 34]. These studies exemplify such 122 an approach that can link density dependent predator theories with scavenging and serve as relevant benchmark studies. However, further refinements (i.e., additional seasonal 123 124 replications) are required and this could be specifically undertaken within the Australian Alps 125 given the routine dingo control that take place within and surrounding Kosciuszko National 126 Park [35, 36]. Such programmes have been demonstrated to negatively impact dingo density 127 and pack size [37]. Therefore, by monitoring dingo density (i.e., camera trap grid) as a function 128 of anthropogenic control, in tandem with scavenging dynamics surrounding carrion, the flow-129 on effects of dingo densities on dingo scavenging rates and top-down scavenging effects may 130 be uncovered. In addition, more informative measures of dingo top-down scavenging effects 131 other than that used in this study (i.e., presence or absence of dingoes at carcass sites) should 132 be utilised in future studies to characterise more realistic effects on mesoscavengers. This could include the number of visitation to a carcass by dingoes, the time spent scavenging at a carcass,and/or time since last dingo visitation to a carcass.

135 These types of approaches could be further supplemented by a robust quantification of the 136 relative contribution of scavenging vs predation in the diet of the dingo. The most recent 137 continental review of the dingo diet suggested that 66% consisted of mammals, 22% birds, and 138 11% reptiles [38]. However, the dataset used did not provide the capacity to quantify what 139 percentage of that was scavenged vs predated, and indeed, Doherty et al. (2019) highlighted 140 this as an area of further study. A greater understanding of the dingo's diet would be a good 141 first step towards determining how important an energy pathway scavenging is to dingoes, and 142 thus, how important a species they are within their scavenging guilds and the likely extent to 143 which they can exert top-down scavenging effects [39].

144 Lastly, the Australian Alps likely harbours high loads of carrion biomass due to the widespread 145 presence of larger bodied invasive species. The extensive management programs they warrant 146 can also pulse carrion biomass loads within the ecosystem during culling seasons. This raises 147 two points: *firstly*, that estimates of carrion biomass within the Australian Alps, and other 148 ecosystems more broadly, is a field that warrants further attention to determine how over 149 availability or scarcity of carrion affects scavenging dynamics. Secondly, it highlights a 150 relatively novel concept that has seldom been explored and experimentally quantified, the 151 proportion to which scavengers utilise the carcasses of native species vs invasive species [40, 41]. Research in both these areas could yield particularly insightful findings that could explain 152 153 how scavengers react to a variety of unpredictable, abundant, and/or scarce carrion sources, 154 and thus, further develop concepts in the scavenging ecology field.

155

156

## **References**

| 158 | 1.  | DeVault, T.L. and O.E. Rhodes, Identification of vertebrate scavengers of small       |
|-----|-----|---------------------------------------------------------------------------------------|
| 159 |     | mammal carcasses in a forested landscape. Acta Theriologica, 2002. 47(2): p. 185-     |
| 160 |     | 192.                                                                                  |
| 161 | 2.  | Selva, N., et al., Scavenging on European bison carcasses in Bialowieza primeval      |
| 162 |     | forest (eastern Poland). Ecoscience, 2003. 10(3): p. 303-311.                         |
| 163 | 3.  | Selva, N., et al., Factors affecting carcass use by a guild of scavengers in European |
| 164 |     | temperate woodland. Canadian Journal of Zoology, 2005. 83(12): p. 1590-1601.          |
| 165 | 4.  | Jedrzejewska, B. and W. Jedrzejewski, Predation in vertebrate communities: the        |
| 166 |     | Bialowieza Primeval Forest as a case study. Vol. 135. 1998: Springer Science &        |
| 167 |     | Business Media.                                                                       |
| 168 | 5.  | Anderson, G.S., et al., Invertebrate scavenging communities, in Carrion Ecology and   |
| 169 |     | Management. 2019, Springer. p. 45-69.                                                 |
| 170 | 6.  | Ray, RR., H. Seibold, and M. Heurich, Invertebrates outcompete vertebrate             |
| 171 |     | facultative scavengers in simulated lynx kills in the Bavarian Forest National Park,  |
| 172 |     | Germany. Animal Biodiversity and Conservation, 2014. 37(1): p. 77-88.                 |
| 173 | 7.  | Beasley, J.C., et al., Ecological functions of vertebrate scavenging, in Carrion      |
| 174 |     | ecology and management. 2019, Springer. p. 125-157.                                   |
| 175 | 8.  | Parmenter, R.R. and J.A. MacMahon, Carrion decomposition and nutrient cycling in      |
| 176 |     | a semiarid shrub-steppe ecosystem. Ecological Monographs, 2009. 79(4): p. 637-661.    |
| 177 | 9.  | Barton, P.S. and J.K. Bump, Carrion decomposition, in Carrion ecology and             |
| 178 |     | management. 2019, Springer. p. 101-124.                                               |
| 179 | 10. | O'Brien, R.C., et al., The scavenging behaviour of the Australian Raven (Corvus       |
|     |     |                                                                                       |

*coronoides): patterns and influencing factors.* Sylvia, 2010. **46**: p. 138-148.

- 181 11. Moreno-Opo, R. and A. Margalida, *Carcasses provide resources not exclusively to*182 scavengers: patterns of carrion exploitation by passerine birds. Ecosphere, 2013.
  183 4(8): p. 1-15.
- 184 12. Spencer, E. and T. Newsome, *Dingoes dining with death*. Australian Zoologist, 2021.
- 185 13. Meek, P. and S. Brown, It's a dog eat dog world: observations of dingo (Canis
- 186 *familiaris*) cannibalism. Australian Mammalogy, 2016. **39**(1): p. 92-94.
- 187 14. Allen, B.L., *Skin and bone: observations of dingo scavenging during a chronic food*188 *shortage*. Australian Mammalogy, 2010. **32**(2): p. 207-208.
- 189 15. Behrendorff, L., L.K.-P. Leung, and B.L. Allen, *Utilisation of stranded marine fauna*190 *washed ashore on K'gari (Fraser Island), Australia, by dingoes.* Australian Journal of
- 191 Zoology, 2018. **66**(2): p. 128-138.
- 192 16. Schoenly, K.G., J. Michaud, and G. Moreau, *Design and analysis of field studies in*193 *carrion ecology*. Carrion ecology, evolution, and their applications. CRC Press, Boca
  194 Raton, 2015: p. 129-148.
- 195 17. How, R. and S. Hillcox, Brushtail possum, Trichosurus vulpecula, populations in
- 196 south-western Australia: demography, diet and conservation status. Wildlife
- 197 Research, 2000. **27**(1): p. 81-89.
- 198 18. Cochrane, C.H., et al., *Brushtail possum (Trichosurus vulpecula) diet in a north*199 *Westland mixed-beech (Nothofagus) forest.* New Zealand Journal of Ecology, 2003: p.
  200 61-65.
- 201 19. Sweetapple, P., K. Fraser, and P. Knightbridge, *Diet and impacts of brushtail possum*
- 202 *populations across an invasion front in South Westland, New Zealand.* New Zealand
- 203 Journal of Ecology, 2004: p. 19-33.

| 204 | 20. | Owen, H.J. and D.A. Norton, The diet of introduced brushtail possums Trichosurus     |
|-----|-----|--------------------------------------------------------------------------------------|
| 205 |     | vulpecula in a low-diversity New Zealand Nothofagus forest and possible implications |
| 206 |     | for conservation management. Biological conservation, 1995. 71(3): p. 339-345.       |

- 207 21. Wiggins, N.L., et al., *Effects of two plant secondary metabolites, cineole and gallic*
- acid, on nightly feeding patterns of the common brushtail possum. Journal of chemical
  ecology, 2003. 29(6): p. 1447-1464.
- 210 22. Nugent, G., et al., *Possum feeding patterns: dietary tactics of a reluctant folivore*. The
  211 brushtail possum: biology, impact and management of an introduced marsupial, 2000.
- **10**: p. 23.
- 213 23. Brown, K., J. Innes, and R. Shorten, *Evidence that possums prey on and scavenge*214 *birds' eggs, birds and mammals.* Notornis, 1993. 40(3): p. 169-177.
- 215 24. Evans, M., Diet of the Brushtail Possum Trichosurus vulpecula (Marsupialia:
- 216 *Phalangeridae) in central Australia.* Australian Mammalogy, 1992. **15**(1): p. 25-30.
- 217 25. Brashares, J.S., et al., Ecological and conservation implications of mesopredator
- *release.* Trophic cascades: predators, prey, and the changing dynamics of nature,
  2010: p. 221-240.
- 220 26. Ordiz, A., R. Bischof, and J.E. Swenson, *Saving large carnivores, but losing the apex*
- 221 *predator?* Biological Conservation, 2013. **168**: p. 128-133.
- 222 27. Ritchie, E.G. and C.N. Johnson, *Predator interactions, mesopredator release and*223 *biodiversity conservation*. Ecology letters, 2009. 12(9): p. 982-998.
- 224 28. Wallach, A.D., et al., *What is an apex predator?* Oikos, 2015. **124**(11): p. 1453-1461.
- 225 29. Crooks, K.R. and M.E. Soulé, *Mesopredator release and avifaunal extinctions in a*
- 226 *fragmented system.* Nature, 1999. **400**(6744): p. 563-566.
- 227 30. Prugh, L.R., et al., *The rise of the mesopredator*. Bioscience, 2009. **59**(9): p. 779-791.

- 31. Newsome, T.M., et al., *Top predators constrain mesopredator distributions*. Nature
  communications, 2017. 8(1): p. 1-7.
- 230 32. Forsyth, D.M., et al., How does a carnivore guild utilise a substantial but
- 231 *unpredictable anthropogenic food source? Scavenging on hunter-shot ungulate*
- 232 *carcasses by wild dogs/dingoes, red foxes and feral cats in south-eastern Australia*
- 233 *revealed by camera traps.* PLoS One, 2014. **9**(6): p. e97937.
- 234 33. Cunningham, C.X., et al., *Top carnivore decline has cascading effects on scavengers*235 *and carrion persistence*. Proceedings of the Royal Society B, 2018. 285(1892): p.
- 236 20181582.
- 34. Fielding, M.W., et al., *Dominant carnivore loss benefits native avian and invasive mammalian scavengers.* bioRxiv, 2021.
- 35. McIlroy, J., et al., *The Effect on Wild Dogs, Canis-F-Familiaris, of 1080-Poisoning Campaigns in Kosciusko-National-Park, Nsw.* Wildlife Research, 1986. 13(4): p. 535544.
- 242 36. Hunt, R. *Pre baiting using a synthetic scent to increase point of control investigations*
- 243 by foxes (Vulpes vulpes) and wild dogs (Canis lupis dingo/Canis lupis familiaris). in
- 244 Proceedings of the Third NSW Pest Animal Control Conference, Coffs Harbour,
- 245 *NSW*. 2005.
- 37. Bomford, M., *Managing the impacts of dingoes and other wild dogs*. 2001: Bureau of
  Rural Sciences.
- 248 38. Doherty, T.S., et al., *Continental patterns in the diet of a top predator: Australia's*249 *dingo*. Mammal Review, 2019. 49(1): p. 31-44.
- Wirsing, A.J. and T.M. Newsome, *Scavenging effects of large canids*. Integrative and
  Comparative Biology, 2021. 61(1): p. 117-131.

- 40. Abernethy, E.F., et al., *Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem.* Ecosphere, 2016. 7(10): p. e01496.
- 254 41. Dunlop, K.M., et al., *Terrestrial and semi-aquatic scavengers on invasive Pacific pink*
- 255 salmon (Oncorhynchus gorbuscha) carcasses in a riparian ecosystem in northern
- 256 *Norway.* Biological Invasions, 2021. **23**(4): p. 973-979.

257